Природные кристаллы - разновидности, свойства, добыча и применение. Большая энциклопедия нефти и газа

Кристаллы - твердые тела, имеющие многогранную форму, а слагающие их частицы (атомы, молекулы, ионы) расположены закономерно. Поверхность кристаллов ограничена плоскостями, которые носят название граней. Места соединения граней называются рёбрами, точки пересечения которых называются вершинами или углами.

Грани, рёбра и вершины кристаллов связаны зависимостью: число граней + число вершин = число рёбер + 2. В большинстве случаев кристаллические вещества не имеют ясно огранённой формы, хотя и обладают закономерным внутренним кристаллическим строением.

Установлено, что кристаллы построены из материальных частиц - ионов, атомов или молекул, геометрически правильно расположенных в пространстве.

Основные свойства кристаллических веществ следующие:

1. Анизотропность (т.е. неравносвойственность).

Анизотропными называются такие вещества, которые имеют одинаковые свойства в параллельных направлениях, и неодинаковые - в непараллельных.

Различные физические свойства кристаллов, такие, как теплопроводность, твердость, упругость, распространение света и др., изменяются с изменением направления. В противоположность анизотропным, изотропные тела имеют одинаковые свойства во всех направлениях.

2. Способность самоограняться.

Этой специфической особенностью обладают только кристаллические вещества. При свободном росте кристаллы ограничиваются плоскими гранями и прямыми рёбрами, принимая многогранную форму.

3. Симметрия.

Симметрией называется закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. Все кристаллы являются телами симметричными.

Структура кристалла, т.е. расположение в нём отдельных частиц, является симметричной. Следовательно, и сам кристалл будет обладать плоскостями и осями симметрии.

Материальные частицы (атомы, ионы, молекулы) в кристаллическом веществе размещаются не хаотично, а в определённом строгом порядке. Они расположены параллельными рядами, причём расстояния между материальными частицами этих рядов одинаковы. Эта закономерность в строении кристаллов выражается геометрически в виде пространственной решётки, являющейся как бы скелетом вещества.

Представить пространственную решётку можно как бесконечно большое число одинаковых по форме и размеру параллелепипедов, сдвинутых относительно другого и сложенных так, что они выполняют пространство без промежутков.

Вершины параллелепипедов, в которых находятся атомы, ионы или молекулы, называются узлами пространственной решётки, а прямые линии, проведённые через них, - рядами. Любая плоскость, которая проходит через три узла пространственной решётки (не лежащих на одной прямой), называется плоской сеткой. Элементарный параллелепипед, в вершинах которого находятся узлы решётки, носит название ячейки данной пространственной решётки.

Таким образом, кристаллическое вещество имеет строго закономерное (ретикулярное) строение. На приведенном ниже рисунке можно увидеть кристаллические решетки: а) - Алмаза, б) - графита.

Все важнейшие свойства кристаллических веществ являются следствием их внутреннего закономерного строения. Так, например, анизотропность кристаллов можно легко уяснить, если вести измерение каких-либо свойств в различных направлениях. Особенно чётко анизотропия выявляется в оптических свойствах кристаллов, на чём основан один из важнейших методов их изучения, применяемый в минералогии и петрографии.

Способность кристаллов самоограняться также является естественным следствием их внутреннего строения. Грани кристаллов соответствуют плоским сеткам, рёбра - рядам, а вершины углов - узлам пространственной решётки.

Пространственная решётка имеет бесконечное множество плоских сеток, рядов и узлов. Но реальным граням могут соответствовать лишь те плоские сетки решётки, которые имеют наибольшую ретикулярную плотность, т.е. на которых на единицу площади будет приходиться наибольшее число составляющих её частиц (атомов, ионов). Таких плоских сеток сравнительно немного, отсюда и кристаллы имеют вполне определённое число граней.

Тема Симметрия твердых тел

1 Кристаллические и аморфные тела.

2 Элементы симметрии и их взаимодействия

3 Симметрия кристаллических многогранников и кристаллических решеток.

4 Принципы построения кристаллографических классов

Лабораторная работа № 2

Изучение структуры моделей кристаллов

Приборы и принадлежности: карточки с указанием химических элементов, имеющих кристаллическую структуру;

Цель работы: изучить кристаллические и аморфные тела, элементы симметрии кристаллических решеток, принципы построения кристаллографических классов, вычислить период кристаллической решетки для предложенных химических элементов.

Основные понятия по теме

Кристаллы – твердые тела, обладающие трехмерной периодической атомной структурой. При равновесных условиях образования имеют естественную форму правильных симметричных многогранников. Кристаллы – равновесное состояние твердых тел.

Каждому химическому веществу, находящемуся при данных термодинамических условиях (температура, давление) в кристаллическом состоянии, соответствует определенная атомно-кристаллическая структура.

Кристалл, выросший в неравновесных условиях и не имеющий правильной огранки или потерявший ее в результате обработки, сохраняет основной признак кристаллического состояния – решетчатую атомную структуру (кристаллическую решетку) и все определяемые ею свойства.

Кристаллические и аморфные твердые тела

Твердые тела чрезвычайно разнообразны по структуре своего строения, характеру сил связи частиц (атомов, ионов, молекул), физическим свойствам. Практическая потребность в тщательном изучении физических свойств твердых тел привела к тому, что примерно половина всех физиков на Земле занимается исследование твердых тел, созданием новых материалов с наперед заданными свойствами и разработкой их практического применения. Известно, что при переходе веществ из жидкого состояния в твердое возможны два различных вида затвердевания.

Кристаллизация вещества

В жидкости, охлажденной до определенной температуры, появляются кристаллики (области упорядоченно расположенных частиц) – центры кристаллизации, которые при дальнейшем отводе тепла от вещества растут за счет присоединения к ним частиц из жидкой фазы и охватывают весь объем вещества.

Затвердение вследствие быстрого повышения вязкости жидкости с понижением температуры.

Твердые тела, образующиеся при таком процессе затвердения, относятся к аморфным телам. Среди них различают вещества, у которых кристаллизация совсем не наблюдается (сургуч, воск, смола), и вещества, способные кристаллизоваться, например, стекло. Однако, вследствие того, что вязкость у них быстро растет с понижением температуры, затрудняется перемещение молекул, необходимое для формирования и роста кристаллов, и вещество успевает затвердеть до наступления кристаллизации. Такие вещества называются стеклообразными. Процесс кристаллизации этих веществ, протекает очень медленно в твердом состоянии, причем более легко, при высокой температуре. Известное явление "расстекловывания" или "затухания" стекла обусловлено образованием внутри стекла мелких кристалликов, на границах которых происходит отражение и рассеяние света, вследствие чего стекло становится непрозрачным. Похожая картина имеет место при "засахаривании" прозрачного сахарного леденца.

Аморфные тела можно рассматривать как жидкости с очень большим коэффициентом вязкости. Известно, что у аморфных тел можно наблюдать слабо выраженное свойство текучести. Если наполнить воронку кусками воска или сургуча, то через некоторое время, разное для различных температур, куски аморфного тела будут постепенно расплываться, принимая форму воронки и вытекать из нее в виде стержня. Даже у стекла обнаружено свойство текучести. Измерения толщины оконных стекол в старых зданиях показали, что за несколько веков стекло успело стечь сверху вниз. Толщина нижней части стекла оказалась немного большей верхней.

Строго говоря, твердыми телами следует назвать только кристаллические тела. Аморфные тела по некоторым свойствам, а главное по строению, аналогичны жидкостям: их можно рассматривать как сильно переохлажденные жидкости, имеющие очень большую вязкость.

Известно, что в отличие от дальнего порядка в кристаллах (упорядоченное расположение частиц сохраняется по всему объёму каждого кристаллического зерна), в жидкостях и аморфных телах наблюдается ближний порядок в расположении частиц. Это значит, что по отношению к любой частице, расположение ближайших соседних частиц является упорядоченным, хотя и выражено не так чётко, как в кристалле, но при ударении от данной частицы, расположение по отношению к ней других частиц, становится все менее упорядоченным и на расстоянии 3-х – 4 - х эффективных диаметров молекулы, порядок в расположении частиц полностью исчезает.

Сравнительные характеристики различных состояний вещества приведены в таблице 2.1.

Кристаллическая решетка

Для удобства описания правильной внутренней структуры твердых тел обычно пользуются понятием пространственной или кристаллической решетки. Она представляет собой пространственную сетку, в узлах которой располагаются частицы – ионы, атомы, молекулы, образующие кристалл.

На рисунке 2.1 изображена пространственная кристаллическая решетка. Жирными линиями выделен наименьший параллелепипед, параллельным перемещением которого вдоль трех координатных осей, совпадающих с направлением ребер параллелепипеда, может быть построен весь кристалл. Этот параллелепипед называется основной или элементарной ячейкой решётки. Атомы расположены в данном случае в вершинах параллелепипеда.

Для однозначной характеристики элементарной ячейки задается 6 величин: три ребра a, b, c и три угла между ребрами параллелепипеда a, b, g. Эти величины называются параметрами решетки. Параметры a, b, c – это межатомные расстояния в кристаллической решётке. Их численные значения порядка 10 -10 м.

Простейшим типом решёток являются кубические с параметрами a=b=c и a = b = g= 90 0 .

Индексы Миллера

Для символического обозначения узлов, направлений и плоскостей в кристалле используются так называемые индексы Миллера.

Индексы узлов

Положение любого узла в решётке относительно выбранного начала координат определяется тремя координатами X, Y, Z (рисунок 2.2).

Через параметры решетки эти координаты можно выразить следующим образом X= ma, Y= nb, Z= pc, где a, b, c – параметры решётки, m, n, p – целые числа.


Таким образом, если за единицу длин вдоль оси решетки взять не метр, а параметры решётки a, b, c (осевые единицы длины), то координатами узла будут числа m, n, p. Эти числа называются индексами узла и обозначаются .

Для узлов, лежащих в области отрицательных направлений координат, ставиться над соответствующим индексом знак минус. Например .

Индексы направления

Для задания направления в кристалле выбирается прямая, (рисунок 2.2) проходящая через начало координат. Её ориентация однозначно определяется индексом m n p первого узла, через который она проходит. Следовательно, индексы направления определяются тремя наименьшими целыми числами, характеризующими положение ближайшего от начала координат узла, лежащего на данном направлении. Индексы направления записывают следующим образом .

Рисунок 2.3 Основные направления в кубической решетке.

Семейство эквивалентных направлений обозначается ломаными скобками .

Например, семейство эквивалентных направлений включает направления

На рисунке 2.3 представлены основные направления в кубической решетке.

Индексы плоскости

Положение любой в пространстве определяется заданием трех отрезков ОА, ОВ, ОС (рисунок 2.4), которые она отсекает на осях выбранной системы координат. В осевых единицах длины отрезков будут: ; ; .


Три числа m n p вполне определяют положение плоскости S. Для получения Миллеровских индексов с этими числами нужно сделать некоторые преобразования.

Составим отношение обратных величин осевых отрезков и выразим его через отношение трех наименьших чисел h, k, l так, чтобы выполнялось равенство .

Числа h, k, l являются индексами плоскости. Для нахождения индексов плоскости отношение приводят к общему наименьшему знаменателю и знаменатель отбрасывают. Числители дробей и дают индексы плоскости. Поясним это на примере: m = 1, n = 2, p = 3. Тогда . Таким образом, для рассматриваемого случая h = 6, k = 3, l = 2. Миллеровские индексы плоскостей заключаются в круглые скобки (6 3 2). Отрезки m n p могут быть и дробными, но индексы Миллера и в этом случае выражаются целыми числами.

Пусть m =1, n = , p = , то .

При параллельной ориентации плоскости относительно какой-нибудь оси координат, индекс, соответствующий этой оси, равен нулю.

Если отрезок, отсекаемый на оси, имеет отрицательное значение, то соответствующий индекс плоскости тоже будет иметь отрицательный знак. Пусть h = - 6 , k = 3, l = 2, то такая плоскость в Миллеровских индексах плоскостей запишется .

Необходимо отметить, что индексы плоскости (h, k, l) задают ориентацию не какой-то конкретной плоскости, а семейства параллельных плоскостей, то есть, по существу, определяют кристаллографическую ориентацию плоскости.


На рисунке 2.5 изображены основные плоскости в кубической решетке.

Некоторые плоскости, отличающиеся по индексам Миллера, являются

эквивалентными в физическом и кристаллографическом смысле. В кубической решетке одним из примеров эквивалентности являются грани куба . Физическая эквивалентность состоит в том, что все эти плоскости обладают одинаковой структурой в расположении узлов решетки, а следовательно, и одинаковыми физическими свойствами. Кристаллографическая эквивалентность их в том, что эти плоскости совмещаются друг с другом при повороте вокруг одной из осей координат на угол, кратный .Семейство эквивалентных плоскостей задается фигурными скобками. Например символом обозначается все семейство граней куба.

Трехкомпонентная символика Миллера применяется для всех систем решеток, кроме гексагональной. В гексагональной решетке (рисунок 2.7 №8) узлы расположены в вершинах правильных шестигранных призм и в центрах их шестиугольных оснований. Ориентация плоскостей в кристаллах гексагональной системы описывается с помощью четырех осей координат х 1 , х 2 , х 3 , z, так называемыми индексами Миллера – Браве . Оси х 1 , х 2 , х 3 расходятся из начала координат под углом 120 0 . Ось z перпендикулярна к ним. Обозначение направлений по четырёхкомпонентной символике затруднительно и применяется редко, поэтому направления в гексагональной решётке задаются по трехкомпонентной символике Миллера.

Основные свойства кристаллов

Одним из основных свойств кристаллов является анизотропия. Под этим термином понимается изменение физических свойств в зависимости от направления в кристалле. Так кристалл может иметь для разных направлений различную прочность, твердость, теплопроводность, удельное сопротивление, показатель преломления и т.д. Анизотропия проявляется и в поверхностных свойствах кристаллов. Коэффициент поверхностного натяжения для разнородных граней кристалла имеет различную величину. При росте кристалла из расплава или раствора это является причиной различия скоростей роста разных граней. Анизотропия скоростей роста обуславливает правильную форму растущего кристалла. Анизотропия поверхностных свойств также имеет место в различии адсорбционной способности скоростей растворения, химической активности разных граней одного и того же кристалла. Анизотропия физических свойств является следствием упорядоченной структуры кристаллической решетки. В такой структуре плотность упаковки атомами плоскостей различна. Рисунок 2.6 поясняет сказанное.

Расположив плоскости в порядке убывания плотности заселения их атомами, получим следующий ряд: (0 1 0) (1 0 0) (1 1 0) (1 2 0) (3 2 0) . В наиболее плотно заполненных плоскостях атомы прочнее связаны друг с другом, так как расстояние между ними наименьшее. С другой стороны, наиболее плотно заполненные плоскости, будучи удаленными друг от друга на относительно большие расстояния, чем малозаселённые плоскости, будут слабее связаны друг с другом.

На основании изложенного можно сказать, что наш условный кристалл легче всего расколоть по плоскости (0 1 0), чем по другим плоскостям. В этом и проявляется анизотропия механической прочности. Другие физические свойства кристалла (тепловые, электрические, магнитные, оптические) также могут быть различными по разным направлениям. Важнейшим свойством кристаллов, кристаллических решёток и их элементарных ячеек является симметрия по отношению к определённым направлениям (осям) и плоскостям.

Симметрия кристаллов

Таблица 2.1

Кристаллическая система Соотношение ребер элементарной ячейки Соотношение углов в элементарной ячейке
Триклинная
Моноклинная
Ромбическая
Тетрагональная
Кубическая
Тригональная (робоэдрическая)
Гексагональная

В силу периодичности расположения частиц в кристалле он обладает симметрией. Это свойство заключается в том, что в результате некоторых мысленных операций система частиц кристалла совмещается сама с собой, переходит в положение не отличаемое от исходного. Каждой операции можно поставить в соответствие элемент симметрии. Для кристаллов существует четыре элемента симметрии. Это – ось симметрии, плоскость симметрии, центр симметрии и зеркально-поворотная ось симметрии.

В 1867 году русский кристаллограф А.В. Гадолин показал, что может существовать 32 возможные комбинации элементов симметрии. Каждая из таких возможных комбинаций элементов симметрии называется классом симметрии. Опытом было подтверждено, что в природе существуют кристаллы, относящиеся к одному из 32 классов симметрии. В кристаллографии указанные 32 класса симметрии в зависимости от соотношения параметров а, в, с, a, b, g объединяют в 7 систем(сингоний), которые носят следующие названия: Триклинная, моноклинная, ромбическая, тригональная, гексагональная, тетрагональная и кубическая системы. В таблице 2.1 приведены соотношения параметров для указанных систем.

Как показал французский кристаллограф Браве всего существует 14 типов решеток, принадлежащих различным кристаллическим системам.

Если узлы кристаллической решетки расположены только в вершинах параллелепипеда, представляющего собой элементарную ячейку, то такая решетка называется примитивной или простой (рисунок2.7№№ 1, 2, 4, 9, 10, 12), если, кроме того, имеются узлы в центре оснований параллелепипеда, то такая решетка называется базоцентрированной (рисунок2.7№№ 3, 5), если есть узел в месте пересечения пространственных диагоналей, то решетка называется объемоцентрированной (рисунок2.7№№ 6, 11, 13), а если имеются узлы в центре всех боковых граней – гранецентрированной (рисунок2.7 №№ 7, 14). Решетки, элементарные ячейки которых содержат дополнительные узлы внутри объема параллелепипеда или на его гранях, называются сложными.

Решетка Браве представляет собой совокупность одинаковых и одинаково расположенных частиц (атомов, ионов), которые могут быть совмещены друг с другом путем параллельного переноса. Не следует полагать, что одна решетка Браве может исчерпать собой все атомы (ионы) данного кристалла. Сложную структуру кристаллов можно представить как совокупность нескольких реше ток Браве, вдвинутых одна в другую. Например, кристаллическая решетка повареной соли NaCl (рисунок 2.8) состоит из двух кубических гранецентрированных решеток Браве, образованных ионами Na – и Cl + , смещенных относительно друг друга на половину ребра куба.

Вычисление периода решетки.

Зная химический состав кристалла и его пространственную структуру, можно вычислить период решетки этого кристалла. Задача сводиться к тому, чтобы установить число молекул (атомов, ионов) в элементарной ячейке, выразить ее объем через период решетки и, зная плотность кристалла, произвести соответствующий расчет. Важно отметить, что для многих типов кристаллической решетки большинство атомов принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек.

Для примера определим период решетки хлористого натрия, решетка которого показана на рисунке 2.8.

Период решетки равен расстоянию между ближайшими одноименными ионами. Это соответствует ребру куба. Найдем число ионов натрия и хлора в элементарном кубе, объем которого равен d 3 , d – период решетки. По вершинам куба расположено 8 ионов натрия, но каждый из них является одновременно вершиной восьми смежных элементарных кубов, следовательно, данному объему принадлежит лишь часть иона, расположенного в вершине куба. Всего таких ионов натрия весемь, которые в совокупности составляют ион натрия. Шесть ионов натрия расположены в центрах граней куба, но каждый из них принадлежит рассматриваемому кубу только наполовину. В совокупности они составляют иона натрия. Таким образом, рассматриваемому элементарному кубу принадлежит четыре иона натрия.

Один ион хлора расположен на пересечении пространственных диагоналей куба. Он целиком принадлежит нашему элементарному кубу. Двенадцать ионов хлора размещены по серединам ребер куба. Каждый из них принадлежит объему d 3 на одну четверть, так как ребро куба одновременно является общим для четырех смежных элементарных ячеек. Таких ионов хлора рассматриваемому кубу принадлежит 12, которые в совокупности составляют иона хлора. Всего в элементарном объеме d 3 содержится 4 иона натрия и 4 иона хлора, то есть 4 молекулы хлористого натрия (n = 4).

Если 4 молекулы хлористого натрия занимают объем d 3 , то на один моль кристалла придется объем , где А – число Авогадро, n – число молекул в элементарной ячейке.

С другой стороны , где - масса моля, - плотность кристалла. Тогда откуда

(2.1)

При определении числа атомов в одной параллелепипедной элементарной ячейке (подсчет содержания) нужно руководствоваться правилом:

q если центр атомной сферы совпадает с одной из вершин элементарной ячейки, то от такого атома данной ячейке принадлежит , так как в любой вершине параллелепипеда одновременно сходятся восемь смежных параллелепипедов, к которым в равной мере относится вершинный атом (рисунок 2.9);

q от атома, расположенного на ребре ячейки принадлежит данной ячейке , так как ребро является общим для четырех параллелепипедов (рисунок 2.9);

q от атома, лежащего на грани ячейки, принадлежит данной ячейке , так как грань ячейки общая для двух параллелепипедов (рисунок 2.9);

q атом, расположенный внутри ячейки, принадлежит ей целиком (рисунок 2.9).

При использовании указанного правила форма параллелепипедной ячейки безразлична. Сформулированной правилом может быть распространено на ячейки любых систем.

Ход работы

У полученных моделей реальных кристаллов

1 Выделить элементарную ячейку.

2 Определить тип решетки Браве.

3 Произвести "подсчет содержания" для данных элементарных ячеек.

4 Определить период решетки.


Свойства кристаллов, форма и сингония (кристаллографические системы)

Важным свойством кристалла является определенное соответствие между разными гранями - симметрия кристалла. Выделяются следующие элементы симметрии:

1. Плоскости симметрии: разделяют кристалл на две симметричные половины, такие плоскости также называют "зеркалами" симметрии.

2. Оси симметрии: прямые линии, проходящие через центр кристалла. Вращение кристалла вокруг этой оси повторяет форму исходного положения кристалла. Различают оси симметрии 3-го, 4-го и 6-го порядка, что соответствует числу таких позиций при вращении кристалла на 360 o .

3. Центр симметрии: грани кристалла, соответствующие параллельной грани, меняются местами при вращении на 180 o вокруг этого центра. Комбинация этих элементов симметрии и порядков дает 32 класса симметрии для всех кристаллов. Эти классы, в соответствии с их общими свойствами, можно объединить в семь сингонии (кристаллографических систем). По трехмерным осям координат можно определить и оценить позиции граней кристаллов.

Каждый минерал принадлежит к одному классу симметрии, поскольку имеет один тип кристаллической решетки, который его и характеризует. Напротив, минералы, имеющие одинаковый химический состав, могут образовывать кристаллы двух и более классов симметрии. Такое явление называется полиморфизмом. Есть не единичные примеры полиморфизма: алмаз и графит, кальцит и арагонит, пирит и марказит, кварц, тридимит и кристобалит; рутил, анатаз (он же октаэдрит) и брукит.

СИНГОНИИ (КРИСТАЛЛОГРАФИЧЕСКИЕ СИСТЕМЫ) . Все формы кристаллов образуют 7 сингонии (кубическую, тетрагональную, гексагональную, тригональную, ромбическую, моноклинную, триклинную). Диагностическими признаками сингонии являются кристаллографические оси и углы, образуемые этими осями.

В триклинной сингонии присутствует минимальное число элементов симметрии. За ней в порядке усложнения следуют моноклинная, ромбическая, тетрагональная, тригональная, гексагональная и кубическая сингонии.

Кубическая сингония . Все три оси имеют равную длину и расположены перпендикулярно друг другу. Типичные формы кристаллов: куб, октаэдр, ромбододекаэдр, пентагондодекаэдр, тетрагон-триоктаэдр, гексаоктаэдр.

Тетрагональная сингония . Три оси расположены перпендикулярно друг другу, две оси имеют одинаковую длину, третья (главная ось) либо короче, либо длиннее. Типичные формы кристаллов - призмы, пирамиды, тетрагоны, трапецоэдры и бипирамиды.

Гексагональная сингония . Третья и четвертая оси расположены наклонно к плоскости, имеют равную длину и пересекаются под углом 120 o . Четвертая ось, отличающаяся от остальных по размеру, расположена перпендикулярно к другим. И оси и углы по расположению аналогичны предыдущей сингонии, но элементы симметрии весьма разнообразны. Типичные формы кристаллов - трехгранные призмы, пирамиды, ромбоэдры и скаленоэдры.

Ромбическая сингония . Характерны три оси, перпендикулярные друг другу. Типичные кристаллические формы - базальные пинакоиды, ромбические призмы, ромбические пирамиды и бипирамиды.

Моноклинная сингония . Три оси разной длины, вторая перпендикулярна другим, третья находится под острым углом к первой. Типичные формы кристаллов - пинакоиды, призмы с кососрезанными гранями.

Триклинная сингония . Все три оси имеют разную длину и пересекаются под острыми углами. Типичные формы - моноэдры и пинакоиды.

Форма и рост кристаллов . Кристаллы, принадлежащие к одному минеральному виду, имеют схожий внешний вид. Кристалл поэтому можно охарактеризовать как сочетание внешних параметров (граней, углов, осей). Но относительный размер этих параметров довольно разный. Следовательно, кристалл может менять свой облик (чтобы не сказать внешность) в зависимости от степени развития тех или иных форм. Например, пирамидальный облик, где все грани сходятся, столбчатый (в совершенной призме), таблитчатый, листоватый или глобулярный.

Два кристалла, имеющих то же сочетание внешних параметров, могут иметь разный вид. Сочетание это зависит от химического состава среды кристаллизации и других условий формирования, к которым относятся температура, давление, скорость кристаллизации вещества и т. д. В природе изредка встречаются правильные кристаллы, которые формировались в благоприятных условиях - это, например, гипс в глинистой среде или минералы на стенках жеоды. Грани таких кристаллов хорошо развиты. Наоборот, кристаллы, образовавшиеся в изменчивых или неблагоприятных условиях, часто бывают деформированы.

АГРЕГАТЫ . Часто встречаются кристаллы, которым не хватало пространства для роста. Эти кристаллы срастались с другими, образуя неправильные массы и агрегаты. В свободном пространстве среди горных пород кристаллы развивались совместно, образуя друзы, а в пустотах - жеоды. По своему строению такие агрегаты весьма разнообразны. В мелких трещинах известняков встречаются образования, напоминающие окаменевший папоротник. Их называют дендритами, сформировавшимися в результате образования оксидов и гидрооксидов марганца и железа под воздействием растворов, циркулировавших в этих трещинах. Следовательно, дендриты никогда не образуются одновременно с органическими остатками.

Двойники . При формировании кристаллов часто образуются двойники, когда два кристалла одного минерального вида срастаются друг с другом по определенным правилам. Двойники часто представляют собой индивидов, сросшихся под углом. Нередко проявляется псевдосимметрия - несколько кристаллов, относящихся к низшему классу симметрии, срастаются, образуя индивиды с псевдосимметрией более высокого порядка. Так, арагонит, относящийся к ромбической сингонии, часто образует двойниковые призмы с гексагональной псевдосимметрией. На поверхности таких срастаний наблюдается тонкая штриховка, образованная линиями двойникования.

ПОВЕРХНОСТЬ КРИСТАЛЛОВ . Как уже сказано, плоские поверхности редко бывают гладкими. Довольно часто на них наблюдается штриховка, полосчатость или бороздчатость. Эти характерные признаки помогают при определении многих минералов - пирита, кварца, гипса, турмалина.

ПСЕВДОМОРФОЗЫ . Псевдоморфозы - это кристаллы, имеющие форму другого кристалла. Например, встречается лимонит в форме кристаллов пирита. Псевдоморфозы образуются при полном химическом замещении одного минерала другим с сохранением формы предыдущего.


Формы агрегатов кристаллов могут быть очень разнообразны. На фото - лучистый агрегат натролита.
Образец гипса со сдвойникованными кристаллами в виде креста.

Физические и химические свойства. Не только внешняя форма и симметрия кристалла определяются законами кристаллографии и расположением атомов - это относится и к физическим свойствам минерала, которые могут быть разными в различных направлениях. Например, слюда может разделяться на параллельные пластинки только в одном направлении, поэтому ее кристаллы анизотропны. Аморфные вещества одинаковы по всем направлениям, и поэтому изотропны. Такие качества также важны для диагностики этих минералов.

Плотность. Плотность (удельный вес) минералов представляет собой отношение их веса к весу такого же объема воды. Определение удельного веса является важным средством диагностики. Преобладают минералы с плотностью 2-4. Упрощенная оценка веса поможет при практической диагностике: легкие минералы имеют вес от 1 до 2, минералы средней плотности - от 2 до 4, тяжелые минералы от 4 до 6, очень тяжелые - более 6.

МЕХАНИЧЕСКИЕ СВОЙСТВА . К ним относятся твердость, спайность, поверхность скола, вязкость. Эти свойства зависят от кристаллической структуры и используются с целью выбора методики диагностирования.

ТВЕРДОСТЬ . Довольно легко поцарапать кристалл кальцита кончиком ножа, но сделать это с кристаллом кварца вряд ли получится - лезвие скользнет по камню, не оставив царапины. Значит, твердость у этих двух минералов различная.

Твердостью по отношению к царапанью называют сопротивление кристалла попытке внешней деформации поверхности, другими словами, сопротивление механической деформации извне. Фридрих Моос (1773-1839) предложил относительную шкалу твердости из степеней, где каждый минерал имеет твердость к процарапыванию выше, чем предыдущий: 1. Тальк. 2. Гипс. 3. Кальцит. 4. Флюорит. 5. Апатит. 6. Полевой шпат. 7. Кварц. 8. Топаз. 9. Корунд. 10. Алмаз. Все эти значения применимы только к свежим, не подвергшимся выветриванию образцам.

Можно оценить твердость упрощенным способом. Минералы с твердостью 1 легко царапаются ногтем; при этом они жирные на ощупь. Поверхность минералов с твердостью 2 также царапается ногтем. Медная проволока или кусочек меди царапает минералы с твердостью 3. Кончик перочинного ножа царапает минералы до твердости 5; хороший новый напильник - кварц. Минералы с твердостью более 6 царапают стекло (твердость 5). От 6 до 8 не берет даже хороший напильник; при таких попытках летят искры. Чтобы определить твердость, испытывают образцы с возрастающей твердостью, пока они поддаются; затем берут образец, который, очевидно, еще тверже. Противоположным образом надо действовать, если необходимо определить твердость минерала, окруженного породой, твердость которой ниже, чем у минерала, нужного для образца.


Тальк и алмаз, два минерала, занимающие крайние позиции в шкале твердости Мооса.

Легко сделать вывод на основании того, скользит ли минерал по поверхности другого или царапает ее с легким скрипом. Могут наблюдаться следующие случаи:
1. Твердость одинакова, если образец и минерал взаимно не царапают друг друга.
2. Возможно, что оба минерала друг друга царапают, поскольку верхушки и выступы кристалла могут быть тверже, чем грани или плоскости спайности. Поэтому можно поцарапать грань кристалла гипса или плоскость его спайности вершиной другого кристалла гипса.
3. Минерал царапает первый образец, а на нем делает царапину образец более высокого класса твердости. Его твердость находится посредине между используемыми для сравнения образцами, и ее можно оценить в полкласса.

Несмотря на очевидную простоту такого определения твердости, многие факторы могут привести к ложному результату. Например, возьмем минерал, свойства которого сильно разнятся по разным направлениям, как у дистена (кианита): по вертикали твердость 4-4,5, и кончик ножа оставляет четкий след, но в перпендикулярном направлении твердость 6-7 и ножом минерал вообще не царапается. Происхождение названия этого минерала связано с этой особенностью и подчеркивает ее весьма выразительно. Поэтому необходимо проводить испытание твердости по разным направлениям.

Некоторые агрегаты имеют более высокую твердость, чем те компоненты (кристаллы или зерна), из которых они состоят; может оказаться, что плотный обломок гипса трудно поцарапать ногтем. Наоборот, некоторые пористые агрегаты менее твердые, что объясняется наличием пустот между гранулами. Поэтому мел царапается ногтем, хотя состоит из кристаллов кальцита с твердостью 3. Другой источник ошибок - минералы, испытавшие какие-то изменения. Оценить твердость порошкообразных, выветрелых образцов или агрегатов чешуйчатого и игольчатого строения простыми средствами невозможно. В таких случаях лучше использовать другие методы.

Спайность . Ударом молотка или нажатием ножа кристаллы по плоскостям спайности кристалл иногда можно разделить на пластинки. Спайность проявляется по плоскостям с минимальным сцеплением. Многие минералы обладают спайностью по нескольким направлениям: галит и галенит - параллельно граням куба; флюорит - по граням октаэдра, кальцит - ромбоэдра. Кристалл слюды-мусковита; хорошо видны плоскости спайности (на фото справа).

Такие минералы, как слюда и гипс, имеют совершенную спайность в одном направлении, а в других направлениях спайность несовершенная или вообще отсутствует. При тщательном наблюдении можно заметить внутри прозрачных кристаллов тончайшие плоскости спайности по хорошо выраженным кристаллографическим направлениям.

Поверхность излома . Многие минералы, например кварц и опал, не имеют спайности ни в одном направлении. Их основная масса раскалывается на неправильные куски. Поверхность скола можно описать как плоскую, неровную, раковистую, полураковистую, шероховатую. Металлы и крепкие минералы имеют шероховатую поверхность скола. Это свойство может служить диагностическим признаком.

Другие механические свойства . Некоторые минералы (пирит, кварц, опал) раскалываются на куски под ударом молотка - они являются хрупкими. Другие, наоборот, превращаются в порошок, не давая обломков.

Ковкие минералы можно расплющить, как, например, чистые самородные металлы. Они не образуют ни порошка, ни обломков. Тонкие пластинки слюды можно согнуть, как фанеру. После прекращения воздействия они вернутся в исходное состояние - это свойство эластичности. Другие, как гипс и пирит, можно согнуть, но они сохранят деформированное состояние - это свойство гибкости. Такие признаки позволяют распознавать сходные минералы - например, отличить эластичную слюду от гибкого хлорита.

Окраска . Некоторые минералы имеют настолько чистый и красивый цвет, что их используют как краски или лаки. Часто их названия применяют в обиходной речи: изумрудно-зеленый, рубиново-красный, бирюзовый, аметистовый и др. Окраска минералов, один из основных диагностических признаков, не является ни постоянной, ни вечной.

Есть ряд минералов, у которых окраска постоянная - малахит всегда зеленый, графит - черный, самородная сера - желтая. Такие распространенные минералы, как кварц (горный хрусталь), кальцит, галит (поваренная соль), бесцветны, когда в них нет примесей. Однако наличие последних вызывает окраску, и мы знаем голубую соль, желтый, розовый, фиолетовый и коричневый кварц. Флюорит обладает целой гаммой окрасок.

Присутствие элементов-примесей в химической формуле минерала приводит к весьма специфической окраске. На этой фотографии изображен зеленый кварц (празем), в чистом виде совершенно бесцветный и прозрачный.

Турмалин, апатит и берилл имеют различные цвета. Окраска не является несомненным диагностическим признаком минералов, обладающих различными оттенками. Цвет минерала зависит также от наличия элементов-примесей, входящих в кристаллическую решетку, а также различных пигментов, загрязнений, включений в кристалле-хозяине. Иногда он может быть связан с радиоактивным облучением. У некоторых минералов цвет меняется в зависимости от освещения. Так, александрит при дневном свете зеленый, а при искусственном освещении - фиолетовый.

У некоторых минералов изменяется интенсивность окраски при повороте граней кристалла относительно света. Цвет кристалла кордиерита при вращении меняется от голубого до желтого. Причина такого явления состоит в том, что подобные кристаллы, называемые плеохроичными, по-разному поглощают свет в зависимости от направления луча.

Цвет некоторых минералов может изменяться также при наличии пленки, имеющей другую окраску. Эти минералы в результате окисления покрываются налетом, который, возможно, как-то смягчает действие солнечного или искусственного света. Некоторые драгоценные камни теряют свою окраску, если в течение какого-то периода подвергаются солнечному освещению: изумруд теряет свой глубокий зеленый цвет, аметист и розовый кварц бледнеют.

Многие минералы, содержащие серебро (например, пираргирит и прустит), также чувствительны к солнечным лучам (инсоляции). Апатит под воздействием инсоляции покрывается черной вуалью. Коллекционерам следует предохранять такие минералы от воздействия света. Красный цвет реальгара на солнце переходит в золотисто-желтый. Подобные изменения окраски совершаются в природе очень медленно, но можно искусственно очень быстро изменить цвет минерала, ускорив процессы, происходящие в природе. Например, можно при нагревании получить желтый цитрин из фиолетового аметиста; алмазы, рубины и сапфиры искусственно "улучшают" с помощью радиоактивного облучения и ультрафиолетовых лучей. Горный хрусталь благодаря сильному облучению превращается в дымчатый кварц. Агат, если его серый цвет выглядит не слишком привлекательно, можно перекрасить, опустив в кипящий раствор обыкновенного анилинового красителя для тканей.

ЦВЕТ ПОРОШКА (ЧЕРТА) . Цвет черты определяется при трении о шероховатую поверхность неглазированного фарфора. При этом нужно не забывать, что фарфор имеет твердость 6-6,5 по шкале Мооса, и минералы с большей твердостью оставят только белый порошок растертого фарфора. Всегда можно получить порошок в ступке. Окрашенные минералы всегда дают более светлую черту, неокрашенные и белые - белую. Обычно белая или серая черта наблюдается у минералов, окрашенных искусственно, или с загрязнениями и пигментом. Часто она как бы затуманена, так как в разбавленной окраске ее интенсивность обуславливается концентрацией красящего вещества. Цвет черты минералов с металлическим блеском отличается от их собственного цвета. Желтый пирит дает зеленовато-черную черту; черный гематит - вишнево-красную, черный вольфрамит - коричневую, а касситерит - почти неокрашенную черту. Цветная черта позволяет быстрее и легче определить по ней минерал, чем черта разбавленного цвета или бесцветная.

БЛЕСК . Как и цвет, это эффективный метод определения минерала. Блеск зависит оттого, как свет отражается и преломляется на поверхности кристалла. Различают минералы с металлическим и неметаллическим блеском. Если их различить не удается, можно говорить о полуметаллическом блеске. Непрозрачные минералы металлов (пирит, галенит) обладают большой отражательной способностью и имеют металлический блеск. Для другой важной группы минералов (цинковая обманка, касситерит, рутил и др.) определить блеск затруднительно. Для минералов с неметаллическим блеском различают следующие категории в соответствии с интенсивностью и свойствами блеска:

1. Алмазный блеск, как у алмаза.
2. Стеклянный блеск.
3. Жирный блеск.
4. Тусклый блеск (у минералов с плохой отражательной способностью).

Блеск может быть связан со строением агрегата и направлением господствующей спайности. Минералы, имеющие тонкослоистое сложение, имеют перламутровый блеск.

ПРОЗРАЧНОСТЬ . Прозрачность минерала - качество, которое отличается большой изменчивостью: непрозрачный минерал можно легко отнести к прозрачным. Основная часть бесцветных кристаллов (горный хрусталь, галит, топаз) относятся к этой группе. Прозрачность зависит от строения минерала - некоторые агрегаты и мелкие зерна гипса и слюды кажутся непрозрачными или просвечивающими, в то время как кристаллы этих минералов прозрачны. Но если рассматривать с лупой маленькие гранулы и агрегаты, можно видеть, что они прозрачны.

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ . Показатель преломления представляет собой важную оптическую константу минерала. Она измеряется с помощью специальной аппаратуры. Когда луч света проникает внутрь анизотропного кристалла, происходит преломление луча. Такое двойное лучепреломление создает впечатление, что существует виртуальный второй объект параллельно изучаемому кристаллу. Подобное явление можно наблюдать через прозрачный кристалл кальцита.

ЛЮМИНЕСЦЕНЦИЯ . Некоторые минералы, такие как шеелит и виллемит, облучаемые ультрафиолетовыми лучами, светятся специфическим светом, что в ряде случаев может некоторое время продолжаться. Флюорит при нагревании в темном месте светится - это явление называется термолюминесценция. При трении некоторых минералов возникает другой тип свечения - триболюминесценция. Эти разные типы люминесценции являются характеристикой, позволяющей легко диагностировать ряд минералов.

ТЕПЛОПРОВОДНОСТЬ . Если взять в руку кусок янтаря и кусок меди, покажется, что один из них теплее другого. Это впечатление обусловлено различной теплопроводностью данных минералов. Так можно различить стеклянные имитации драгоценных камней; для этого нужно приложить камушек к щеке, где кожа более чувствительна к теплу.

Следующие свойства можно определить по тому, какие ощущения они вызывают у человека. На ощупь графит и тальк кажутся гладкими, а гипс и каолин - сухими и шероховатыми. Растворимые в воде минералы, такие как галит, сильвинит, эпсомит, имеют специфический вкус - соленый, горький, кислый. Некоторые минералы (сера, арсенопирит и флюорит) обладают легко распознаваемым запахом, который возникает сразу при ударе по образцу.

МАГНЕТИЗМ . Фрагменты или порошок некоторых минералов, в основном имеющих повышенное содержание железа, можно отличить от других сходных минералов с помощью магнита. Магнетит и пирротин сильно магнитны и притягивают железные опилки. Некоторые минералы, например гематит, приобретают магнитные свойства, если их раскалить докрасна.

ХИМИЧЕСКИЕ СВОЙСТВА . Определение минералов на основе их химических свойств требует, помимо специального оборудования, обширных знаний в области аналитической химии.

Есть один простой метод для определения карбонатов, доступный непрофессионалам - действие слабого раствора соляной кислоты (вместо нее можно брать обыкновенный столовый уксус - разбавленную уксусную кислоту, которая есть на кухне). Таким способом можно легко отличить бесцветный образец кальцита от белого гипса - нужно капнуть на образец кислоты. Гипс на это не реагирует, а кальцит "вскипает" при выделении углекислого газа.

Как отличить кристаллы от некристаллических твердых тел? Может быть, по многогранной форме? Но у кристаллических зерен в металле или в горной породе форма неправильная; а с другой стороны стекло, например, тоже может быть многогранным - кто не видел граненых стеклянных бус? Однако мы говорим, что стекло - некристаллическое вещество. Почему?

Прежде всего потому, что кристаллы сами без помощи человека, принимают свою многогранную форму, а стекло должно быть огранено рукой человека.

Все вещества в мире построены из мельчайших, не видимых глазом, непрерывно движущихся частиц - из ионов, атомов, молекул.

Основное же различие между и стеклами заключается в их внутреннем строении, в том, как расположены в них мельчайшие частички вещества - молекулы, атомы и ионы. В газообразных телах, жидкостях и некристаллических твердых телах, например в стекле, мельчайшие частицы вещества расположены совершенно беспорядочно. А в твердых кристаллических телах частицы расположены как бы правильным строем. Они напоминают группу физкультурников в строю, с той, однако, разницей, что правильные ряды частиц тянутся не только вправо и влево, вперед и назад, но и вверх и вниз. Кроме того, частицы не стоят неподвижно, а непрерывно колеблются, удерживаясь на своих местах электрическими силами. Расстояния между частицами внутри кристаллов малы так же, как малы и сами атомы: на отрезке длиной в 1 см можно расположить примерно 100 млн. атомов. Это очень большое число: представьте себе, что 100 млн. человек выстроены в шеренгу плечом к плечу. Такая шеренга могла бы опоясать Землю по экватору.

Правильный строй частиц в каждом веществе различен, поэтому так многообразны формы кристаллов. Но у всех кристаллов атомы или молекулы обязательно расположены в строгом порядке, а у некристаллических тел такого порядка нет. Поэтому мы и говорим: кристаллы - это твердые тела, в которых составляющие их частицы расположены правильным строем.

Законы построения всех кристаллов теоретически вывели великий русский кристаллограф Евграф Степанович Федоров (1853-1919) и немецкий кристаллограф Артур Шёнфлис. Замечательно, что Федоров сделал это за 20 лет до того, как в 1912 г. на опыте с помощью рентгеновских лучей было доказано, что действительно атомы в кристаллах располагаются правильным строем и что законы их расположения именно таковы, как было гениально предугадано русским ученым.

Правильное периодическое расположение атомов (или других частиц) в кристалле называется кристаллической решеткой .

Каждый имеет свою характерную многогранную форму, которая зависит от строения его кристаллической решетки. К примеру, кристаллы поваренной соли имеют, как правило, форму куба, другие вещества кристаллизуются в виде всевозможных пирамид, призм, восьмигранников (октаэдров) и других многогранников.

Но в природе такие правильные формы кристаллов встречаются редко, об этом вы прочтете дальше.

Некристаллические вещества не имеют собственной формы, потому что составляющие их частицы расположены хаотично, беспорядочно.

Правильное расположение частиц определяет и свойства кристалла. Не поразительно ли, например, что два столь различных минерала, как невзрачный черный графит и сверкающий прозрачный , построены из одних и тех же атомов углерода! - это кристаллы углерода. Если кристаллические решетки из атомов углерода построены по одному образцу, то они образуют прозрачные кристаллы алмаза, самого твердого из всех веществ на Земле и самого дорогого из драгоценных камней.Но если те же атомы углерода располагаются по другому, то получаются мелкие, черные, непрозрачные кристаллы графита - одного из самых мягких минералов. Алмаз почти вдвое тяжелее графита. Графит проводит электричество, а алмаз не проводит. Кристаллы алмаза хрупки, кристаллы графита гибки. Алмаз легко сгорает в струе кислорода, а из графита даже делается огнеупорная посуда - настолько он противостоит огню. Два совершенно различных вещества, а построены из одних и тех же атомов, и разница между ними лишь в их различной структуре.

Строение алмаза совсем иное, чем у графита; здесь нет легко сдвигающихся слоев, и алмаз оказывается гораздо прочнее графита.

Каждый знает кристаллы слюды. Слюду легко расщепить лезвием ножа или просто пальцами: листочки слюды отделяются друг от друга почти без труда. Но попробуйте разделить, разрезать или разбить слюду поперек плоскости пластинки - это очень трудно:слюда, непрочная вдоль плоскости листка, в поперечном направлении оказывается намного проч¬нее. Прочность кристаллов слюды в разных направлениях различна.

Это свойство опять-таки характерно для кристаллов. Известно, что стекло, например, легко разбивается как угодно, во всех направлениях, на неправильные осколки. А вот кристалл каменной соли, как бы мелко ни разбивать его, всегда останется кубом, т. е. он все время легко раскалывается только по взаимно-перпендикулярным, совершенно плоским граням.

Кристалл раскалывается по тем направлениям, где прочность меньше всего. Не у каждого кристалла это выявляется так ясно, как у слюды или каменной соли - например, кварц не раскалывается по ровным плоскостям,- у всех кристаллов прочность в разных направлениях различна. У каменной соли, например в одном направлении прочность в восемь раз больше, чем в другом, а у кристаллов цинка - в десять раз. По этому признаку можно отличить кристаллы от некристаллов: в некристаллических телах прочность одинакова по всем направлениям, поэтому они никогда не раскалываются по ровным плоскостям.

Если нагревать какое-нибудь тело, то он начнет расширяться. И тут легко увидеть разницу между веществами кристаллическими и некристаллическими: стекло будет расширяться по всем направлениям одинаково, а кристалл по разным направлениям различно. Кристаллы кварца, например, расширяется в продольном направлении вдвое больше, чем в поперечном. Твердость, теплопроводность, электрические и другие свойства кристаллов также различны по разным направлениям.

Особый интерес представляют оптические свойства кристаллов. Если разглядывать сквозь кристаллы исландского шпата предметы, то они будут казаться удвоенными. В кристалле исландского шпата луч света раздваивается. Такое свойство тоже различно по разным направлениям: если вращать кристалл, то буквы будут раздваиваться то больше, то меньше.

Формы кристаллических многогранников поражают взгляд своей строгой симметрией.

Симметрия кристаллов - важное и характерное их свойство. По форме кристаллов и по их симметрии определяют кристаллическое вещество.

: а (100), о (111), d 110)

1.Дипирамиды, т.е. формы, имеющие характер двух пирамид, сложенных своими основаниями. Такие дипирамиды отличаются количеством граней и называются так же, как простые пирамиды. Например, дигексагональная дипирамида есть простая форма, сложенная 24 гранями, причем эти грани образуют две двенадцатигранные пирамиды, сложенные своими основаниями (табл. 2, 14).

2. Скаленоэдры и трапецоэдры - простые формы, сходные с дипирамидами, но с боковыми ребрами, не лежащими в одной плоскости (табл. 2, 32, 33 и 28-30).

3.Ромбоэдр - простая форма, сложенная из шести ромбов и представляющая собой перекошенный куб (табл. 2, 31).

4.Тетраэдр - простая форма, сложенная четырьмя треугольными непараллельными гранями.

При этом форма треугольной грани может быть разносторонней (ромбический тетраэдр), равнобедренной (тетрагональный тетраэдр) и равносторонней (кубический или, в узком смысле слова, - тетраэдр) (табл. 2, 25-27).

Для простых форм кубической характерно полное замыкание пространства (закрытые формы). Из них чаще всего встречаются

1.Куб - форма, состоящая из шести квадратных граней - символ (100) (табл. 2, 34).

2. Октаэдр - форма, состоящая. из восьми равносторонних треугольных граней - символ (111) (табл. 2, 35).

3.Ромбододекаэдр - форма, состоящая из двенадцати ромбических граней- символ (110) (табл. 2, 39).

4.Тетраэдр - форма, состоящая из четырех равносторонне треугольных граней - символ (111) или (111) (табл. 2, Щ..

5.Пентагондодекаэдр - форма, состоящая из двенадцати пятиугольных граней. Символ (210) или вообще (hko) (табл.2,40).

В зависимости от условий кристаллизации каждое кристаллизующееся вещество может принять вид или простой формы или комбинации, если, кроме граней одной простой фигуры, появляются одновременно грани другой или нескольких других простых форм.

При учете того, из каких простых форм состоит данная комбинация, следует иметь в виду, что, входя в состав комбинации, грани каждой простой формы уже не имеют того типа, какой они имеют, образуя только эту простую форму. При определении названия каждой простой формы, входящей в коли и нацию, следует мысленно продолжить все грани этой формы до взаимного пересечения. Только тогда можно себе представить, какова эта определенная простая форма.

На рис. 12 изображены: а - комбинация куба и октаэдра, б - комбинация октаэдра и куба, причем октаэдр является основной формой и, наконец, в - комбинация октаэдра, куба и ромбододекаэдра.

Огранение кристалла является следствием определенной симметрии его внутреннего строения. Отсюда следует, что на кристалле могут появляться лишь такие грани, которые отвечают данному классу или виду симметрии.

Из сказанного видно, какую огромную роль играет знание кристаллографической формы минерала для его диагностики.

Кроме того, весьма существенным является тот факт, что на преимущественное развитие граней той или иной простой формы влияют и внешние условия образования кристалла: температура, концентрация в растворе или расплаве других компонентов, кислая или щелочная реакция кристаллизующейся среды, быстрота охлаждения и т. п. Отсюда следует, что вид или облик того или иного минерала (его габитус) может служить иногда хорошим критерием условий образования определенного месторождения. , позволяющие делать такие заключения, называются типоморфными.

Так, например, (СаСО 3), кристаллизующийся в классе L 3 3L 2 3РС тригональной , может иметь совершенно различный облик в зависимости от условий образования: он может давать и сильно сплющенные ромбоэдры (табл. 2, 31) и ромбоэдры более вытянутые по оси и, наконец, сильно вытянутые скаленоэдры (табл. 2, 33).

Изучение влияния среды на облик кристаллов является одной из интереснейших и важнейших задач генетической минералогии, позволяющей вскрывать особенности того или иного месторождения, нередко имеющего большое практическое значение.

Вторым примером могут быть кристаллы флюорита (СаF 2). При высоких температурах они образуются в виде октаэдров (табл. 2,), а при кристаллизации в низкотемпературных условиях в виде кубов (табл. 2, ).

Рис. 13. Кристаллы гипса.

В природных условиях постоянно наблюдается срастание кристаллов. Так, очень часто встречаются друзы («щетки») горного хрусталя или аметиста - группы кристаллов на общем основании (рис. 28). В друзах кристаллы срастаются в случайном положении в зависимости от условий образования. Но, кроме случайных срастаний, наблюдаются закономерные срастания кристаллов, которые получили название двойников.

Причиной, заставляющей кристаллическое тело с самого момента своего зарождения принять форму двойников, могут бы или условия кристаллизации, или изменения давления и температуры.

Различают два основных типа двойников: двойники срастания, примером которых могут служить весьма часто встречающиеся двойники гипса (рис. 13).

Рис. 14. Двойник прорастания плавикового шпата (флюорита)

Нередко наблюдаются двойники другого типа, так называемые двойники прорастания. Примером может служить двойник прорастания плавикового шпата (рис. 14), в котором два куба как бы проросли друг друга в двойниковом положении, причем двойниковой плоскостью (плоскостью срастания) служит плоскость октаэдра.

Наружная симметрия двойниковых сростков всегда отличается от симметрии отдельных индивидуумов, слагающих тот или иной сросток, так как двойниковое срастание вызывает появление таких элементов симметрии, какими отдельные индивидуумы не обладали.

ОПТИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

Как упомянуто выше, в кристаллических (анизотропных) веществах, в отличие от аморфных (изотропных), физические, а следовательно, и оптические свойства неодинаковы по разным направлениям.

К числу оптических свойств кристаллов, вытекающих из их анизотропности, относится и двойное преломление, ко торое впервые обнаружил на кристаллах прозрачного кальцита (исландского шпата) датский ученый Эразм Бартолин еще в 1670 г.

Явление это заключается в следующем. Если взять прозрачный ромбоэдр исландского шпата и положить его на бумагу с какой-либо надписью, сквозь кристалл будут видны две надписи одна над другой (рис. 15), причем буквы одной надписи видны слабее, чем другой. Явление это тем эффектнее, чем толще кристалл.

Рис. 15. Двойное лучепреломление в кристалле исландского шпата

Это замечательное свойство, столь отчетливо выраженное на исландском шпате, в действительности характерно для большинства прозрачных кристаллов (кроме кристаллов кубической ), но выражено обычно гораздо слабее. Если положить кристалл исландского шпата на бумагу, на которой находится черная точка, сделанная карандашом или чернилами, сквозь кристалл будут видны две точки. Если теперь вращать кристалл на бумаге вокругупомянутой точки, более отчетливая точка останется неподвижной, а другая, по мере вращения кристалла, будет описывать окружность вокруг первой. Каждый луч света, проходящий в этом опыте через кристалл исландского шпата в наш глаз, разделяется на два луча, которые называют: лучом обыкновенным (неподвижная точка в нашем опыте) и лучом необыкновенным (точка, которая движется вместе с кристаллом приего вращении).

Итак, всякий луч, вошедший в оптически анизотропный кристалл, распадается на два луча, идущих с разными скоростями и поляризованных во взаимно перпендикулярных плоскостях.

Эти явления объясняются тем, что световые колебания, совершающиеся в оптически анизотропной среде в двух взаимно перпендикулярных направлениях, встречают в кристалле различное сопротивление своему продвижению. Следствием этого оба луча пройдут через кристалл с различной скоростью, а следовательно, будут иметь и различные показатели преломления, которые, как

Рис. 16. Поляризационный микроскоп МП-2 завода „Русские самоцветы»

известно, обратно пропорциональны скоростям прохождения света через какую-либо среду. Это явление и получило название двойного светопреломления и свойственно в разной степени всем кристаллам, кроме принадлежащих к кубической сингонии и ведущих себя оптически, как тела изотропные.

Явлением двупреломления, а также и другими оптическими свойствами кристаллов широко пользуются в петрографии и минералогии для исследования минералогического состава пород и агрегатов.

Наиболее распространенным для этого исследования прибором является поляризационный микроскоп, представляющий одно из наиболее мощных орудий при исследовании пород и минералов (рис. 16). Исследование ведется или изучением мелких кри сталлических зерен или изучением тонкой (0,03 мм) пластинки породы, наклеенной на (шлиф). Непрозрачные и руды также изучаются при помощи специального микроскопа, позволяющего делать наблюдения, используя свет, отраженный от полированной поверхности образца (пришлифовки).

ОБРАЗОВАНИЕ КРИСТАЛЛОВ

Возникновение кристаллов связано с упорядочением расположения частиц в пространстве и образования ими кристаллической решетки.

Раз возникнув, кристалл не остается неизменным. Если он окружен средою, которая способна содержать то же вещество, то он будет увеличиваться в размерах — расти или, наоборот, растворятся. То или другое направление процесса будет зависеть от того, какой из этих противоположных процессов пойдет быстрее. Если частицы будут отрываться от кристалла в большем количестве, чем присоединяться к нему, кристалл будет растворяться. Если же частицы будут присоединяться к нему в большем количестве, чем отрываться от него - то кристалл будет расти. Некоторые кристаллы в природе достигают гигантских размеров. Так, на Волыни в 1945 г. был найден кристалл кварца весом 9 т. Его длина была около 2,7 м, а ширина около 1,5 м. Чаще всего кристаллы образуются из растворов холодных и горячих. Очень много кристаллов образуется при охлаждении расплавленных масс при высоких температурах. Реже кристаллы возникают из газов (иней, выделения нашатыря в вулканах). Широко распространено также образование кристаллов в твердых средах - «прекристаллизация».