Миф об особой роли сознания наблюдателя в квантовой механике. Что мы знаем. Наблюдатель

Ярко блестела золотистая осенняя листва деревьев. Лучи вечернего солнца коснулись поредевших верхушек. Свет пробился сквозь ветки и устроил спектакль из причудливых фигур, мелькавших на стене университетской «каптёрки».

Задумчивый взгляд сэра Гамильтона медленно скользил, наблюдая за игрой светотени. В голове ирландского математика шла настоящая плавильня мыслей, идей и выводов. Он прекрасно понимал, что объяснение многих явлений с помощью Ньютоновской механики подобно игре теней на стене, обманчиво сплетающих фигуры и оставляющих без ответа многие вопросы. «Возможно, это волна… а может быть, поток частиц, - размышлял учёный, - или свет является проявлением обоих явлений. Подобно фигурам, сотканным из тени и света».

Начало квантовой физики

Интересно наблюдать за великими людьми и пытаться осознать, как рождаются великие идеи, изменяющие ход эволюции всего человечества. Гамильтон - один из тех, кто стоял у истоков зарождения квантовой физики. Спустя пятьдесят лет, в начале двадцатого века, изучением элементарных частиц занимались многие учёные. Полученные знания были противоречивы и нескомпилированы. Однако первые шаткие шаги были сделаны.

Понимание микромира в начале ХХ века

В 1901 году была представлена первая модель атома и показана её несостоятельность, с позиции обычной электродинамики. В этот же период Макс Планк и Нильс Бор публикуют множество трудов о природе атома. Несмотря на их кропотливый труд, полного понимания структуры атома не существовало.

Спустя несколько лет, в 1905 году, малоизвестный немецкий учёный Альберт Эйнштейн опубликовал доклад о возможности существования светового кванта в двух состояниях - волнового и корпускулярного (частицы). В его труде приводились доводы, поясняющие причину несостоятельности модели. Однако видение Эйнштейна было ограничено старым пониманием модели атома.

После многочисленных трудов Нильса Бора и его коллег в 1925 году зародилось новое направление - некое подобие квантовой механики. Распространённое выражение - «квантовая механика» появилось спустя тридцать лет.

Что мы знаем о квантах и их причудах?

На сегодня квантовая физика ушла достаточно далеко. Открыто много различных явлений. Но что мы знаем на самом деле? Ответ представлен одним учёным современности. "В квантовую физику можно либо верить, либо ее не понимать", - таково определение Подумайте над этим сами. Достаточно будет упомянуть такое явление, как квантовая запутанность частиц. Это явление ввергло научный мир в положение полного недоумения. Ещё большим шоком стало то, что возникший парадокс несовместим с и Эйнштейна.

Впервые эффект квантовой запутанности фотонов обсуждался в 1927 году на пятом Солвеевском Конгрессе. Между Нильсом Бором и Эйнштейном возник жаркий спор. Парадокс квантовой спутанности полностью изменил понимание сути материального мира.

Известно, что все тела состоят из элементарных частиц. Соответственно, все явления квантовой механики отражаются в обычном мире. Нильс Бор говорил, что если мы не смотрим на Луну, то её не существует. Эйнштейн считал это неразумным и полагал, что объект существует независимо от наблюдателя.

При изучении проблем квантовой механики следует понимать, что её механизмы и законы взаимосвязаны между собой и не подчиняются классической физике. Попробуем разобраться в самой противоречивой области - квантовой запутанности частиц.

Теория квантовой запутанности

Для начала стоит понимать, что квантовая физика подобна бездонному колодцу, в котором можно обнаружить все, что угодно. Явление квантовой запутанности в начале прошлого века изучалось Эйнштейном, Бором, Максвеллом, Бойлем, Беллом, Планком и многими другими физиками. На протяжении двадцатого века по всему миру активно изучали это и экспериментировали тысячи учёных.

Мир подчинён строгим законам физики

Почему такой интерес к парадоксам квантовой механики? Все очень просто: мы живём, подчиняясь определённым законам физического мира. Умение «обходить» предопределённость открывает магическую дверь, за которой все становится возможным. К примеру, концепция «Кота Шрёдингера» ведёт к управлению материей. Также станет возможна телепортация информации, которую вызывает квантовая запутанность. Передача информации станет мгновенной, независимо от расстояния.
Этот вопрос пока находится в стадии изучения, однако имеет положительную тенденцию.

Аналогия и понимание

Чем же уникальна квантовая запутанность, как её понять и что происходит при этом? Попробуем разобраться. Для этого потребуется провести некий мысленный эксперимент. Представьте, что у вас в руках две коробки. В каждой из них лежит по одному мячу с полосой. Теперь одну коробку отдаём космонавту, и он улетает на Марс. Как только вы открываете коробку и видите, что полоса на мяче горизонтальна, то в другой коробке мяч автоматически будет иметь вертикальную полосу. Это и будет квантовая запутанность простыми словами выраженная: один объект предопределяет положение другого.

Однако следует понимать, что это лишь поверхностное объяснение. Для того чтобы получить квантовую запутанность, необходимо, чтобы частицы имели одинаковое происхождение, подобно близнецам.

Очень важно понимать, что эксперимент будет сорван, если до вас кто-то имел возможность посмотреть хотя бы на один из объектов.

Где может быть использована квантовая спутанность?

Принцип квантовой запутанности может быть использован для передачи информации на большие расстояния мгновенно. Подобный вывод противоречит теории относительности Эйнштейна. Она гласит, что максимальная скорость перемещения присуща только свету - триста тысяч километров в секунду. Подобная передача информации даёт возможность существования физической телепортации.

Все в мире - информация, в том числе и материя. К такому выводу пришли квантовые физики. В 2008 году на основании теоретической базы данных удалось увидеть квантовую спутанность невооружённым глазом.

Это в очередной раз говорит о том, что мы стоим на пороге великих открытий - перемещения в пространстве и во времени. Время во Вселенной дискретно, поэтому мгновенное перемещение на огромные расстояния даёт возможность попадать в различную плотность времени (на основании гипотез Эйнштейна, Бора). Возможно, в будущем это будет реальностью так же, как мобильный телефон сегодня.

Эфиродинамика и квантовая запутанность

По мнению некоторых ведущих учёных, квантовая спутанность поясняется тем, что пространство заполнено неким эфиром - чёрной материей. Любая элементарная частица, как нам известно, пребывает в виде волны и корпускулы (частицы). Некоторые учёные считают, что все частицы находятся на «полотне» тёмной энергии. Понять это непросто. Давайте попробуем разобраться другим путём - методом ассоциации.

Представьте себя на берегу моря. Лёгкий бриз и слабое дуновение ветра. Видите волны? А где-то вдалеке, в отблесках лучей солнца, виден парусник.
Корабль будет нашей элементарной частицей, а море - эфиром (тёмной энергией).
Море может находиться в движении в виде видимых волн и капель воды. Точно так же и все элементарные частицы могут быть просто морем (её составляющей неотъемлемой частью) или же отдельной частицей - каплей.

Это упрощённый пример, все несколько сложнее. Частицы без присутствия наблюдателя находятся в виде волны и не имеют определённого местоположения.

Белый парусник - это выделенный объект, он отличается от глади и структуры воды моря. Точно так же существуют «пики» в океане энергии, которые мы можем воспринимать как проявление известных нам сил, сформировавших материальную часть мира.

Микромир живёт по своим законам

Принцип квантовой запутанности можно понять, если брать в учёт то, что элементарные частицы находятся в виде волн. Не имея определённого местоположения и характеристик, обе частицы пребывают в океане энергии. В момент появления наблюдателя волна «превращается» в доступный осязанию объект. Вторая частица, соблюдая систему равновесия, приобретает противоположные свойства.

Описанная статья не направлена на ёмкие научные описания квантового мира. Возможность осмысления обычного человека базируется на доступности понимания изложенного материала.

Физика элементарных частиц изучает запутанность квантовых состояний на основании спина (вращения) элементарной частицы.

Научным языком (упрощённо) - квантовая спутанность определяется по разному спину. В процессе наблюдения за объектами учёные увидели, что может существовать только два спина - вдоль и поперёк. Как ни странно, в других положениях частицы наблюдателю не «позируют».

Новая гипотеза - новый взгляд на мир

Изучение микрокосмоса - пространства элементарных частиц - породило множество гипотез и предположений. Эффект квантовой запутанности натолкнул учёных на мысль о существовании некой квантовой микрорешётки. По их мнению, в каждом узле - точке пересечения - находится квант. Вся энергия - целостная решётка, а проявление и движение частиц возможно только через узлы решётки.

Размер «окна» такой решётки достаточно мал, и измерение современным оборудованием невозможно. Однако, чтобы подтвердить или опровергнуть данную гипотезу, учёные решили изучить движение фотонов в пространственной квантовой решётке. Суть в том, что фотон может двигаться либо прямо, либо зигзагами - по диагонали решётки. Во втором случае, преодолев большую дистанцию, он потратит больше энергии. Соответственно, будет отличаться от фотона, движущегося по прямой линии.

Возможно, со временем мы узнаем, что живём в пространственной квантовой решётке. Или же это предположение может оказаться неверным. Однако именно принцип квантовой запутанности указывает на возможность существования решётки.

Если говорить простым языком, то в гипотетическом пространственном «кубе» определение одной грани несёт за собой чёткое противоположное значение другой. Таков принцип сохранения структуры пространство - время.

Эпилог

Чтобы понимать волшебный и загадочный мир квантовой физики, стоит внимательно всмотреться в ход развития науки за последние пятьсот лет. Раньше считалось, что Земля имеет плоскую форму, а не сферическую. Причина очевидна: если принять её форму круглой, то вода и люди не смогут удержаться.

Как мы видим, проблема существовала в отсутствии полного видения всех действующих сил. Возможно, что современной науке для понимания квантовой физики не хватает видения всех действующих сил. Пробелы видения порождают систему противоречий и парадоксов. Возможно, магический мир квантовой механики хранит в себе ответы на поставленные вопросы.

Никто в мире не понимает квантовую механику - это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция - математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому - тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов - медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики - объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах - крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр - около 1 нм), а на чуть более ощутимом объекте - крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно - после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись - теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье , опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать - просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» - комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин - декогеренция.

Дело вот в чем - во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» - необратимый с точки зрения процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните - сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность - выбирать приходится каждому из нас.

Наука кроме всего прочего интересна своей непредсказуемостью. Среди физиков, и не только, известна история о том, как в середине XIX века профессор Филипп фон Жолли отговаривал молодого Макса Планка заниматься теоретической физикой, утверждая, что эта наука близка к завершению и что в ней остались лишь незначительные проблемы. Планк, к счастью, его не послушал и стал основоположником квантовой механики, одной из самых успешных теорий в истории физики. Большинство технических достижений физики ХХ века справедливо связывают с квантовой механикой. Атомная энергетика и лазеры, теории элементарных частиц и физика твердого тела, успехи наноэлектроники и теория сверхпроводимости немыслимы без квантовой механики. Эти вызывающие восхищение успехи привели к почти всеобщей вере в справедливость основных принципов квантовой механики. Сомнения, казалось бы, здесь неуместны. Но семинар «Квантовая теория без наблюдателя» в университете немецкого города Билефельд 22–26 апреля 2013 года свидетельствует о том, что всё не так однозначно. Семинар проводится в рамках программы научных исследований Европейского сообщества «Фундаментальные проблемы квантовой физики» . Программа включает четыре основные темы: 1) квантовая теория без наблюдателя, 2) эффективное описание сложных систем, 3) квантовая теория и теория относительности, 4) от теории к эксперименту.

В обосновании необходимости данной программы говорится, что сейчас многие ученые согласны с известным высказыванием Эйнштейна 1926 года: «Квантовая механика, несомненно, впечатляет. Но внутренней голос говорит мне, что это не есть, однако, реальная вещь. Теория говорит многое, но она не приближает нас к секретам Создателя. Я, во всяком случае, уверен, что Он не играет в кости ». Судя по составу участников программы, ученых, согласных с Эйнштейном, действительно немало. В программе MP1006 принимают участие ученые из 22 европейских стран и Израиля, а также из отдельных университетов США, Австралии, Индии, Мексики и Южной Африки.

В качестве мотивации необходимости создания квантовой теории без наблюдателя приводится одно из высказываний ирландского физика Джона Белла (1928–1990): «Формулировки квантовой механики, которые вы находите в книгах, предполагают разделение мира на наблюдателя и наблюдаемое, и вам не говорят, где проходит это разделение - с какой стороны очков, например, или с какой стороны моего оптического нерва... Таким образом, мы имеем теорию, которая является фундаментально неясной ». Эта проблема не является новой. Она возникла сразу после того, как совсем молодой Гейзенберг предложил в 1925 году описывать не то, что происходит, а то, что наблюдается. По воспоминаниям самого Гейзенберга, в беседе, после его выступления в 1926 году в Берлинском университете, Эйнштейн сказал, что «с принципиальной точки зрения желание строить теорию только на наблюдаемых величинах совершенно нелепо. Потому что в действительности всё ведь обстоит как раз наоборот. Только теория решает, что именно можно наблюдать. Видите ли, наблюдение, вообще говоря, есть очень сложная система ». Через 63 года, в 1989 году, Белл писал в статье «Против измерения»: «Эйнштейн говорил, что теория определяет, что может быть "наблюдаемым". Я думаю, он был прав: "наблюдение" - это крайне сложный процесс для теоретического описания. Поэтому такого понятия не должно быть в формулировке фундаментальной теории ». Таким образом, согласно мнению не только Белла, но и достаточно большого числа ученых, с ним согласных, в наиболее успешной теории ХХ века есть такие понятия, которых не должно быть в формулировке фундаментальной теории. Стоит ли обращать на это внимание? Ответ на данный вопрос, очевидно, связан с ответом на вопрос о целях научного исследования.

Ортодоксальная квантовая механика отказалась от того, что Эйнштейн считал «высшей целью всей физики: полное описание реального состояния произвольной системы (существующей независимо от акта наблюдения или существования наблюдателя)... ». Этот отказ явился следствием того, что Гейзенберг, Бор и др. потеряли надежду на возможность реалистического описания некоторых явлений, таких, например, как эффект Штерна-Герлаха. Штерн и Герлах обнаружили в 1922 году, что измеряемые значения проекций магнитного момента атомов имеют дискретные значения. Бор писал в 1949 году, что, «как ясно показали Эйнштейн и Эренфест [в 1922 году], наличие такого эффекта ставило непреодолимые трудности перед всякой попыткой наглядно представить себе поведение атома в магнитном поле ». А спустя 32 года Белл писал: «Из-за явлений подобного рода среди физиков возник скепсис относительно возможности создания непротиворечивого пространственно-временного описания процессов, происходящих на атомном и субатомном уровнях... Более того, некоторые стали утверждать, что атомы и субатомные частицы не имеют определенных параметров, кроме тех, что наблюдаются. Не существует, например, определенного значения параметра, по которому можно было бы различить частицы, приближающиеся к анализатору Штерна-Герлаха, до отклонения их траектории вверх или вниз. В действительности реально не существуют даже частицы ».

Вопрос о существовании параметров до наблюдения был главным предметом спора между основоположниками квантовой теории Гейзенбергом, Бором и др., с одной стороны, и Эйнштейном, Шрёдингером и др. - с другой стороны. Шрёдингер писал в 1951 году, что «Бор, Гейзенберг и их последователи... имеют в виду, что объект не существует независимо от наблюдающего субъекта ». Он выражал свое несогласие с тем, «что глубокое философское размышление об отношении объекта и субъекта и об истинном значении отличий между ними зависит от количественных результатов физических или химических измерений ». Эйнштейн свое несогласие выразил, в частности, известным высказыванием «Мне хотелось бы думать, что Луна существует, даже когда я на нее не смотрю ». Наиболее известным эпизодом в этом споре гигантов явилась статья 1935 года - Эйнштейна, Подольского и Розена.

ЭПР стремились доказать, как писал в 1981 году Белл, «что теоретики, создавшие квантовую механику, опрометчиво поспешили отказаться от реальности микроскопического мира ». Но сейчас статья ЭПР известна большинству не этим доказательством, а ЭПР-корреляцией, которую сами ЭПР считали невозможной, а многие современные авторы считают реально существующей. Это является, пожалуй, главным парадоксом в истории с ЭПР-корреляцией. ЭПР-корреляция и неравенства Белла с наибольшей достоверностью доказали, что предположение о существовании параметров до измерения противоречит ортодоксальной квантовой механике. Из нелокальности ЭПР-корреляции следует, что описание акта измерения не может быть полным без включения в него сознания наблюдателя. Нелокальность является следствием того, что имеет разные названия: скачок Дирака, коллапс или редукция волновой функции, «квантовый скачок от возможности к действительности» (по Гейзенбергу), но один смысл - мгновенное, нелокальное, необратимое превращение суперпозиции в собственное состояние при измерении. Эта особая роль акта измерения определяется тем, что, как писал Дирак в 1930 году, «измерение всегда вызывает скачок системы в собственное состояние той динамической переменной, измерение которой производилось ». Этот скачок не может быть следствием воздействия прибора на квантовую систему, так как неравенства Белла выводятся именно из этого предположения. Воздействие может быть любым, которое необходимо для описания результатов измерений. Единственным условием при выводе неравенств Белла является локальность воздействия: изменение условий эксперимента не может мгновенно повлиять на результат измерений в пространственно удаленной области. Нелокальное воздействие прибора есть реальная нелокальность, означающая возможность изменить прошлое, что логически невозможно. Поэтому нарушение неравенств Белла, предсказываемое квантовой механикой, может быть только следствием нелокальности нашего сознания.

Для Гейзенберга и других создателей квантовой механики не могло быть вопроса, с какой стороны очков проходит разделение между наблюдателем и наблюдаемым. Для них, мысливших в традициях европейской философии, это разделение могло быть только следствием картезианского разделения на сущности мыслящие и сущности протяженные. Утверждение Гейзенберга «Классическая физика основывалась на предположении - или, можно сказать, на иллюзии, - что можно описать мир или, по меньшей мере, часть мира, не говоря о нас самих » подчеркивает, что квантовая механика отказалась от полярности этого разделения, когда сущности протяженные мыслились независимо от сущностей мыслящих. Но, отказавшись от иллюзии, Гейзенберг не сказал, как описать мир, говоря о нас самих. Это, пожалуй, является главной причиной, почему желание строить теорию только на наблюдаемых величинах совершенно нелепо. Поэтому задача создания квантовой теории без наблюдателя, т. е. без нас самих, всегда была актуальной. Самыми известными попытками ее решения являются «многомировая» интерпретация, предложенная Эвереттом в 1957 году, и интерпретация Бома 1952 года, вдохновившая Белла на создание знаменитых неравенств Белла.

Но для большинства физиков эта задача была и остается непонятной. В одной из своих последних работ Белл писал об одной из статей 1988 года, которая «особенно выделяется своим здравым смыслом. Автора шокируют "...такие ошеломляющие фантазии, как многомировая интерпретация..". Он отвергает утверждения фон Неймана, Паули, Вигнера, что описание "измерения" не может быть полным без включения в него сознания наблюдателя ». Такое отношение к квантовой механике с позиций здравого смысла характерно для большинства физиков. Во всех или почти во всех учебниках и книгах акт измерения (наблюдения) рассматривается как процесс взаимодействия квантовой системы не с наблюдателем, а с бездушным измерительным прибором. Заблуждение о возможности замены сознания наблюдателя измерительным прибором особенно сильно среди физиков советской школы. Наш выдающийся ученый, лауреат Нобелевской премии академик В. Л. Гинзбург признавался в предисловии к статье «Концепция сознания в контексте квантовой механики», опубликованной в журнале «Успехи физических наук» в 2005 году, что, являясь материалистом, он не понимает, «почему так называемая редукция волновой функции как-то связана с сознанием наблюдателя ». Квантовую механику учили (и учат) так, что многие не знают не только о проблеме «сознания наблюдателя», но даже о редукции волновой функции. Автор статьи «Две методологические революции в физике - ключ к пониманию оснований квантовой механики», опубликованной в 2010 году в журнале «Вопросы философии», признается: «Сам я услышал о ней уже после окончания МФТИ и защиты диссертации по квантовой механике ». Поэтому сам факт постановки задачи создания квантовой теории без наблюдателя должен быть интересен нашим ученым. Этот факт свидетельствует о возрастающем понимании значения работ Джона Белла, сборник которых впервые был опубликован в 1987 году и несколько раз переиздавался, последний раз в 2011 году.

В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемую величину. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей (это не фантазия) книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения влияет на измеряемые свойства ничтожно. А теперь задумаемся о процессах, происходящих на субатомном уровне.

Допустим, нам необходимо выяснить пространственное местонахождение элементарной частицы, например, электрона. Нам по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у нас нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. За что мы ему очень признательны. Как и за введенное им понятие "неопределенности", математически выраженное в неравенстве, в правой части которой погрешность измерения координаты умножена на погрешность измерения скорости, а в левой части - константа связанная с массой частицы. Сейчас объясню почему это важно.

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку - в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.

И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).

В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Чем меньше неопределенность в отношении одной переменной (координаты частицы), тем более неопределенной становится другая переменная (погрешность измерения скорости) поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части.На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.

На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость - на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, пока мы проводим измерение состояния квантовой системы на предмет определения ее энергии, сама энергия системы случайным образом меняется - происходят ее флуктуация, - и выявить ее мы не можем. Тут уместно было бы рассказать о коте Шредингера, но это будет уже совсем не гуманно.

Окей. Надеюсь это потому что вы любите физику, а не котиков.

Вперед, Макдуф, и будь проклят тот, кто первый крикнет: «Хватит, стой!»

Как объяснил нам Гейзенберг, из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера, которое и говорит нам о том, как изменяется со временем состояние квантовой системы. Если не интересны подробности, рекомендую пропустить два следующих абзаца.

Про волновую функцию. Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) - в такой передаче энергии участвуют частицы; или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа - корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений - волновыми уравнениями. Все без исключения волны - волны океана, сейсмические волны горных пород, радиоволны из далеких галактик - описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности. Он применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Теперь про кота. Всем известно, что коты любят прятаться в коробках (). Эрвин Шредингер тоже был в курсе. Более того, с чисто нордическим изуверством он использовал эту особенность в знаменитом мысленном эксперименте. Суть его заключалась в том, что в коробке с адской машиной заперт кот. Машина через реле подсоединена к квантовой системе, например, радиоактивно распадающемуся веществу. Вероятность распада известна и составляет 50%. Адская машина срабатывает когда квантовое состояние системы меняется (происходит распад) и котик погибает полностью. Если предоставить систему "Котик-коробка-адская машина-кванты" самой себе на один час и вспомнить, что состояние квантовой системы описывается в терминах вероятности, то становится понятным, что узнать жив котик или нет, в данный момент времени, наверняка не получится, так же, как не выйдет точно предсказать падение монеты орлом или решкой заранее. Парадокс очень прост: волновая функция, описывающая квантовую систему, смешивает в себе два состояния кота - он жив и мертв одновременно, так же как связанный электрон с равной вероятностью может находится в любом месте пространства, равноудаленного от атомного ядра. Если мы не открываем коробку, мы не знаем точно, как там котик. Не произведя наблюдения (читай измерения) над атомным ядром мы можем описать его состояние только суперпозицией (смешением) двух состояний: распавшегося и нераспавшегося ядра. Кот, находящийся в ядерной зависимости, и жив и мертв одновременно. Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное?

Копенгагенская интерпретация эксперимента говорит нам о том, что система перестаёт быть смешением состояний и выбирает одно из них в тот момент, когда происходит наблюдение, оно же измерение (коробка открывается). То есть сам факт измерения меняет физическую реальность, приводя к коллапсу волновой функции (котик либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого)! Вдумайтесь, эксперимент и измерения, ему сопутствующие, меняют реальность вокруг нас. Лично мне этот факт выносит мозг гораздо сильнее алкоголя. Небезызвестный Стив Хокинг тоже тяжело переживает этот парадокс, повторяя, что когда он слышит про кота Шредингера, его рука тянется к браунингу. Острота реакции выдающегося физика-теоретика связанна с тем, что по его мнению, роль наблюдателя в коллапсе волновой функции (сваливанию её к одному из двух вероятностных) состояний сильно преувеличена.

Конечно, когда профессор Эрвин в далеком 1935 г. задумывал свое кото-измывательство это был остроумный способ показать несовершенство квантовой механики. В самом деле, кот не может быть жив и мертв одновременно. В результате одной из интерпретаций эксперимента стала очевидность противоречия законов макро-мира (например, второго закона термодинамики - кот либо жив, либо мертв) и микро-мира (кот жив и мертв одновременно).

Вышеописанное применяется на практике: в квантовых вычислениях и в квантовой криптографии. По волоконно-оптическому кабелю пересылается световой сигнал, находящийся в суперпозиции двух состояний. Если злоумышленники подключатся к кабелю где-то посередине и сделают там отвод сигнала, чтобы подслушивать передаваемую информацию, то это схлопнет волновую функцию (с точки зрения копенгагенской интерпретации будет произведено наблюдение) и свет перейдёт в одно из состояний. Проведя статистические пробы света на приёмном конце кабеля, можно будет обнаружить, находится ли свет в суперпозиции состояний или над ним уже произведено наблюдение и передача в другой пункт. Это делает возможным создание средств связи, которые исключают незаметный перехват сигнала и подслушивание.

Ответить

Ещё 2 комментария

Квантовая коммуникация указано, что фактически ученые научились "подсматривать" состояние первой частицы, и благодаря этому точно определять спин второй, связанной, частицы если вывести в этот момент времени первую частицу из состояния квантовой запутанности. То есть между частицами существует какая-то связь, над которой время и расстояние не подвластны. Фактически русская литература (которую я нашел в интернете))) фактически до этого момента уже не доходит. Не подскажите, что можно почитать понятное про всё это? Спасибо!

Ответить

Прокомментировать

А именно в посте Random Science: как квантовый эффект Зенона останавливает время , в котором описывается эффект Зенона из квантовой физики. Он заключается в том, что если наблюдать за распадающимся (или радиоактивным) атомом с определенной частотой (или так называемой вероятностью события, причем при вычислении вероятности сразу включается только ограниченная двоичная логика - да или нет), то атом может не распадаться практически безконечно - пока вы наблюдате за ним и насколько вас хватит. Проводились эксперименты, подтверждались данные - действительно, изначальные атомы, за которыми "наблюдали" ученые с определенной частотой (или вероятностью) - не распадались. Почему слово "наблюдали" вынесено в кавычки? Ответ под катом вместе с постом lana_artifex и моими комментариями к нему.

Элейский Зенон - греческий философ, который предположил, что если время разделить на множество отдельных частей, то мир замрет. Оказалось, что Зенон был прав, если говорить о квантовой механике. Он делал это, предлагая серии парадоксов, среди которых было доказательство, что ничего никогда не двигается. И в случае с этим парадоксом, ученые только в 1977 г. смогли догнать безумные идеи Зенона.

Физики из Университета Техаса - Д. Сударашан и Б. Мишра, предложили доказательства эффекта Зенона, показав, что можно остановить распад атома просто наблюдая за ним достаточно часто.

Официальное название современной научной теории - квантовый эффект Зенона, и он основан на довольно известном Парадоксе Стрелы. Стрела летит в воздухе. Ее полет является серией состояний. Состояние определяется самым коротким промежутком времени из возможных. В любой момент состояния, стрела неподвижна. Если бы она не была неподвижна, то было бы два состояния, одно, в котором стрела находится в первой позиции, второе, где стрела находится во второй позиции. Это вызывает проблему. Не существует другого способа описать состояние, но если время состоит из множества состояний, и стрела не двигается ни в одном из них, то стрела не может двигаться вовсе.

Данная идея сокращения времени между наблюдениями движений заинтересовала двух физиков. Они поняли, что распадом некоторых атомов можно манипулировать при помощи Парадокса Стрелы. Атом Натрия, который не находится под наблюдением имеет потенциал к распаду, по крайней мере с нашей точки зрения данный атом находится в состоянии суперпозиции. Он как разложился, так и нет. Проверить нельзя пока никто не посмотрит на него. Когда это происходит, атом переходит в одно из двух состояний. Это как подбросить монетку, шанс 50/50, что атом распался. В определенный момент времени, после того как он перешел в состояние суперпозиции, существует больший шанс, что он не распался при наблюдении за ним. В другие моменты наоборот, он скорее распадется.

Предположим, что атом скорее распался после трех секунд, но маловероятно, что распался после одной. Если проверить через три секунды, то атом скорее будет разложившимся. Однако Мишра и Сударашан предполагают, что если проверять атом три раза в секунду, то вероятность того, что он не распадется вырастает. На первый взгляд звучит как полный бред, но это именно то, что происходит. Исследователи проводили наблюдение за атомами: в зависимости от частоты измерений, они повышали или уменьшали шанс на распад, нежели в случае с обычной ситуацией.

“Усовершенствованный” распад является результатом квантового анти-эффекта Зенона. Если правильно подстроить частоту измерений, можно заставить систему распадаться быстрей или медленней. Зенон был прав. Мы действительно можем остановить мир, главное научиться смотреть на него правильно. В то же время, мы можем и привести к его разрушению, если не будем аккуратны.

Мои комментарии к посту:

kactaheda
Интересные темы поднимаете. Нет ли случайно информации, с помощью чего наблюдали за атомом?
"Атом Натрия, который не находится под наблюдением имеет потенциал к распаду, по крайней мере с нашей точки зрения данный атом находится в состоянии суперпозиции"

lana_artifex
Определённые темы поднимаю на уровне общедоступного блога, обсуждаю их со своим кругом друзей и не развиваю далее - пусть в блоге они остаются на уровне науки, не всякий поймёт эти темы в их развитии. Информации такой нет, но вы как читаете мысли - есть возможность запросить инфу по этому вопросу у автора, что уже было сделано, пока без ответа

kactaheda
Можете не утруждаться - я вам попробую ответить сам:) А вы разве не автор этого блога?
Итак, что такое процесс наблюдения в квантовой физике? Классически - это момент регистрации определенной частички в пространстве. Но идем дальше. Наблюдаем мы не глазами и не камерой, а... тоже частичками. В классическом эксперименте с двумя щелями за прохождением электрона через одну из щелей наблюдают с помощью фотонов. Получается забавная вещь - наблюдающие фотоны как бы сбивают пролетающие электроны. Но есть еще один интересный момент - что электроны, что фотоны являются электромагнитными волнами, распространяющимися в среде (назовем ее эфир, как привычнее для меня или же поле, физический вакуум, как его называют современные ученые) на скорости света. То есть одни волны интерферируют с другими, причем ортогонально - то есть перпендикулярно направлениям распространения друг друга. При таком наблюдении фотонами за электронами, электрон, являясь волной, не может проинтерферировать сам с собой, создавая спектральную картину на экране из максимумов и минимумов, а пролетает как бы только через одну щель - что видно в виде одной полоски на экране.

Итак, исходя из всего этого, можно сделать вывод, что "бомбардируя" распадающийся атом натрия другими наблюдательными частичками, в этом эксперименте просто постоянно пытаются поддерживать его устойчивое состояние, добавляя энергию порциями - в каждый момент наблюдения.

lana_artifex
Спасибо, поняла суть!

lana_artifex
Тему с эффектом Зенона подняла как философскую подводку к следующему посту о картине, а сами по себе прочтения эффекта Зенона - тема уже больше эзотерическая, в лучшем смысле этого слова

kactaheda
Да, в эзотерике именно об этом и говорится - наши мысли (являясь электромагнитными волнами) влияют на другие электромагнитные волны, из которых состоит весь Мир - вплоть до мельчайшего атома, протона, мюона и любого возможного бозона:) И таких частичек можно открывать миллиарды - например частичку Бога в БАКе:)
Так что вот я и вернулся к своему первому посту в ЖЖ - про Наблюдателя в квантовой физике... Только теперь у меня есть научное объяснение чудесам.