Роль клубеньковых бактерий. Клубеньковые бактерии бобовых культур

Эти микроорганизмы способствуют выделению азота из воздушных потоков и преобразовывать его в полезные соединения. Бактерии создают на корневой системе ряда бобовых растений клубеньки, впадая в симбиоз. Разбираемся сегодня, клубеньковые бактерии чем обогащают почву.

Азот находится не только в атмосфере, но и в земной поверхности. И необходимо вовлекать его в общий круговой оборот. В подобного рота цикле активное участие принимают клубеньковые бактерии. Они усваивают азот из атмосферных масс и почвенного состава, перерабатывают его в органические компоненты, способные с легкостью потребляться растительным миром.
Растения потребляются людьми и животными, которые со временем отдают азотные элементы в воздух в результате наступления процесса денитрификации.

Роль бактерий в поставке азота

Насыщение почвенного слоя азотом – результат деятельности микроскопических организмов, к которым относятся и клубеньковые. Раньше считали, что этим видом работ занимаются исключительно клубеньковые организмы, способные потреблять из воздуха азот. И основную задачу в этом возлагали на бобовую растительность, как единственного источника для жизнедеятельности бактерий. Сегодня это мнение пересмотрено, так как в последнее время выявлено достаточное количество различных микроорганизмов, способствующих переработке азота.

И все же главное место в этом процессе отводится отряду клубеньковых. К нему причисляют ризобиум. Такой вид напоминает по своей форме палочку, не создает колоний, существует поодиночке либо парами. Встречаются отдельные виды, патогенные для человека, зараженного СПИДом.
Второй представитель – некоторые из актиномицетов, проживающие в корневых системах деревьев, обладающих способностью создавать для них клубеньковые отростки.

Попадая в волоски корней, бактерии создают активное деление их клеток, в ходе которого создаются клубеньки. Сами бактериальные микроорганизмы поселяются внутри, развиваются и перерабатывают азот. И в этих же клубеньковых отростках бактерии преобразуются в разветвленные формы, способные усваивать азот, соли, аминосодержащие кислоты, нитратные компоненты. С целью получения углерода микроорганизмы пользуются спиртами, моносахаридами, органическими кислотами.

Условия жизнедеятельности

Представители клубеньковых достигают размеров от 0,5 до 3 мкм. Они не создают споры, являются достаточно подвижными, грамотрицательные. Чтобы обменный процесс проходил без нарушений, следует обеспечить постоянный доступ кислорода. При разведении бактерий в условиях лабораторных опытов, наибольших результатов можно достичь при соблюдении температурного режима не менее двадцати пяти градусов тепла. Формы округлые, на вид прозрачные, консистенции слизистые.


Такие бактерии находят свое развитие на корневых системах бобовых, количество которых может достигать десяти процентов от общего числа. При этом у различных представителей создаются определенные виды этих организмов микроскопических форм.

С отмиранием корешков происходит и разрушение клубней. Но это не влечет за собой гибель бактерий. Они продолжают существовать в почве и перерабатывать азотные массы.

Бактериальные колонии способны поглощать около трехсот килограмм азота на каждый гектар земли, и в результате их процессов жизнедеятельности в почве задерживается более пятидесяти кило соединений, имеющих в своем составе азот. Именно поэтому используют , чтобы растения могли потреблять из земли полезные соединения, вредных для здоровья. Высаживая после бобовых другие культуры например капусту урожай будет отличным.

Для севооборота в качестве используют бобовые, так как они отлично для этого подходят. Они рано всходят являясь холодостойкими и их корни рыхлят землю. Чаще применяют горох, однолетний , вику, клевер, люцерну, нут, бобы и сою, фасоль, чечевицу, донник, козлятник, горох полевой и др. сильно обогащают почву азотом. Заделывание в верхний слой почвы зелень этих растений, заменяет удобрение навозом. Растения холодостойкие, рано всходят, а их корни мощно рыхлят землю.

С целью увеличения клубеньковых бактерий в почве и повышения урожайности бобовых, при посадке в землю можно внести нитрагин. С помощью этого средства проводится искусственное заражение семенного фонда клубеньковыми бактериями.


Распространение клубеньковых бактерий в природе

Являясь симбиотическими организмами, клубеньковые бактерии распространяются в почвах, сопутствуя определенным видам бобовых растений. После разрушения клубеньков клетки клубеньковых бактерий попадают в почву и переходят к существованию за счет различных органических веществ подобно другим почвенным микроорганизмам. Почти повсеместное распространение клубеньковых бактерий является доказательством высокой степени их адаптируемости к различным почвенно-климатическим условиям, способности вести симбиотический и сапрофитный способ жизни.

Схематизируя имеющиеся к настоящему времени данные по распространению клубеньковых бактерий в природе, можно сделать следующие обобщения.

В целинных и окультуренных почвах присутствуют обычно в больших количествах клубеньковые бактерии тех видов бобовых растений, которые имеются в составе дикой флоры или культивируются длительное время в данной местности. Численность клубеньковых бактерий всегда наивысшая в ризосфере бобовых растений, несколько меньше их в ризосфере других видов и мало в почве вдали от корней.

В почвах встречаются как эффективные, так и неэффективные клубеньковые бактерии. Имеется много данных о том, что длительное сапрофитное существование клубеньковых бактерий, особенно в почвах с неблагоприятными свойствами (кислых, засоленных), ведет к снижению и даже утрате активности бактерий.


Рис. 1 - Клубеньки на корнях ольхи (по Дж. Бекингу)

Перекрестная заражаемость разных видов бобовых растений нередко приводит в природе и сельскохозяйственной практике к появлению на корнях клубеньков, недостаточно активно фиксирующих молекулярный азот. Это, как правило, зависит от отсутствия в почве соответствующих видов клубеньковых бактерий.

Особенно часто такое явление наблюдается при использовании новых видов бобовых растений, которые либо заражаются неэффективными видами бактерий Перекрестных групп, либо развиваются без клубеньков.

Рис. 2 - Клубеньки на корнях трибулюс (по О. Аллен)

Клубеньковые бактерии используются для промышленного производства нитрагина, применяемого для обработки семян бобовых растений. Они впервые обнаружены М. С. Ворониным в 1866 г. Позже М. В. Бейеринком (1888) они были выделены в чистой культуре и подробно изучены микробиологами и физиологами. Бактерии попадают в корни бобовых растений через корневой волосок и проникают во внутренние покровы корня, в паренхиму, вызывая усиленное деление и разрастание клеток. На корнях образуются уродливые наросты, называемые желваками, или клубеньками. Вначале бактерии усваивают питательные вещества растения и несколько тормозят его рост. Затем по мере разрастания ткани клубенька между бактериями и высшими растениями устанавливается симбиоз. Бактерии получают от растения углеродистую пищу (сахара) и минеральные вещества, а взамен предоставляют ему азотистые соединения.

Клубеньковые бактерии поселяются в почве, размножаются и через отверстия в корневых волосках бобовых растений проникают в корневые клетки. В клетках происходит усиленное размножение клубеньковых бактерий и параллельно идет интенсивное деление корневых клеток, инфицированных клубеньковыми бактериями.

Клубеньковые бактерии снабжают бобовое растение азотом. Растение использует этот связанный азот и в свою очередь доставляет клубеньковым бактериям необходимые им углеродсодержащие органические вещества. В качестве источника углерода клубеньковые бактерии могут использовать различные сахара, спирты.

Клубеньковые бактерии - микроаэрофилы (развиваются при незначительных количествах кислорода в среде), предпочитающие, однако, аэробные условия. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина. Основная масса бактерий размножается в цитоплазме клетки, а не в инфекционной нити. Наиболее интенсивно развиваются при реакции почвы, близкой к нейтральной. Поэтому при посевах бобовых на кислых почвах наряду с инокуляцией семян необходимо известкование почвы. Инокуляция без известкования оказывает очень слабое влияние на урожай и содержание белка.

Клубеньковые бактерии способны при благоприятных условиях за один сезон накопить до 200 - 300 кг / га азота.

Молодые клубеньковые бактерии в чистой культуре на питательных средах обычно имеют палочковидную форму (рис. 2, 3), размер палочек примерно 0 5 - 0 9 X 1 2 - 3 0 мкм, подвижные, размножаются делением

Помимо клубеньковых бактерий, в почве живут и другие микроорганизмы, способные усваивать свободный азот воздуха; они обитают не на корнях растений, а вблизи них. Все остальные питательные вещества, необходимые этим микробам, они усваивают самостоятельно, а не за счет соков растения, как это присуще клубеньковым растениям. Важнейшим из живущих в почве микроорганизмов, способных усваивать азот атмосферы, является азотобактер. Эти бактерии могут жить при благоприятных условиях влажности, хорошем притоке воздуха, подходящих температуре и кислотности почвы. Требования азотобактера к тепловому режиму и влажности почвы примерно такие же, как и требования культурных растений, но к кислотности почвы он чувствительнее, чем большинство растений.



Клубеньки образуются только у представителей семейства бобовых (Fabaceae). В различных растениях клубеньки различаются только по форме и величине. Образуются они после проникновения в корневую систему клубеньковых бактерий.

Многочисленные исследования показали, что клубеньковые бактерии отличаются между собой, а потому род Rhizobium надо рассматривать как группу родственных микроорганизмов. В молодом возрасте эти бактерии подвижны, имеют палочкообразную форму, длиной от 1,2 до 3 мкм, размещение жгутиков у одних видов перитрихальное, в других - субполярные. Клубеньковые бактерии являются грамотрицательными, неспороносными аэробными организмами.

Старея, клубеньковые бактерии теряют жгутики, перестают быть подвижными и приобретают вид опоясанных палочек, поскольку с возрастом бактериальная клетка наполняется жировыми включениями, не окрашиваются. Со старением в клубеньках культуры Rhizobium часто возникают утолщенные, разветвленные, сферические и другой формы образования, значительно больше обычных клетки. Эти полиморфные образования получили название бактероидов.

Клубеньковые бактерии могут ассимилировать различные углеводы, органические кислоты и многоатомные спирты. В качестве источника азота им доступны аминокислоты. Для большинства культур Rhizobium оптимальное значение рН среды равно 6,5-7,5, а оптимальная температура составляет 24-26 ° С.

Установлено, что клубеньковые бактерии могут заражать только определенную группу бобовых растений. Выборочная способность этих бактерий относительно растений получила название специфичности. Это свойство стала главным признаком для разработки систематики клубеньковых бактерий.

В отдельных случаях наблюдается не только видовая, но и сортовая специфичность клубеньковых бактерий. Кроме специфичности, этим бактериям свойственна вирулентность - способность проникать в ткань корня, размножаться там и вызвать образование пузырьков. При определенных условиях эти бактерии могут снижать или вовсе терять активность.

Существенным свойством клубеньковых бактерий является также их активность, то есть способность в симбиозе с растениями ассимилировать молекулярный азот. В почве случаются штаммы активных и неактивных клубеньковых бактерий. Заражение бобовых растений активной расой бактерий ведет к образованию большого количества пузырьков на главном корне и вызывает энергичный процесс фиксации атмосферного азота. Неактивные расы этих бактерий вызывают образование пузырьков, но азот не фиксируется.

Клубеньки, которые образуются активными расами бактерий, имеют розовую окраску. Пигмент, придающий им такой окраски, по химическому составу близок к гемоглобину крови и называется леггемоглобин (фитоглобин). Считают, что этот пигмент способствует процессу усвоения азота, поддерживая окислительно-восстановительный потенциал на определенном уровне. Клубеньки, которые образуют неактивные расы бактерий, имеют зеленоватый цвет.

0

Развитие симбиотических ассоциаций между бобовыми растениями и клубеньковыми бактериями представляет огромный интерес для агрономии. Эти симбиозы обеспечивают большую часть биологически связанного азота, доступного сельскохозяйственным культурам.

Клубеньковые бактерии - довольно обычные грам-отрицательные микроорганизмы, объединенные в одно семейство с известными фитопатогенными бактериями Agrobacterium. Хотя клубеньковые бактерии рассматриваются в этой статье исключительно с точки зрения их роли в симбиотических взаимоотношениях с растениями, необходимо всегда помнить, что они очень хорошо приспособлены к длительному выживанию в почве даже в отсутствие специфических растений-хозяев. Точно так же и хозяева этих бактерий - бобовые растения, например соя и клевер, могут хорошо расти без своих симбионтов. Таким образом, симбиоз бобовых растений и клубеньковых бактерий - это скорее факультативная, а не облигатная ассоциация. Она обычно выгодна для обоих организмов, но не обязательна для их развития. Каждый партнер этой ассоциации может вести свою собственную жизнь и хорошо для этого приспособлен. Следовательно, можно ожидать, что в процессе инфекции и установления симбиоза развитие клубеньковых бактерий должно быстро изменяться, т. е. происходит адаптация, позволяющая им перейти из комплексной среды обитания в почве в динамическую среду на поверхности корня, а затем в совсем особую среду внутри клеток хозяина. Растение-хозяин должно также быстро реагировать на присутствие симбиотических бактерий на поверхности его корней, причем ответные реакции хозяина должны заметно отличаться от их реакций на другие почвенные микроорганизмы. В растении-хозяине должны произойти значительные внутренние изменения, в результате которых оно сможет принять своего бактериального партнера и переключиться с потребления связанного азота из экзогенных источников на усвоение симбиотически образованного NH 3 . Совершенно очевидно, что процесс инфекции и развития симбиотических отношений состоит из целой серии мутуалистических адаптаций. Во многих отношениях этот процесс напоминает инфицирование восприимчивого хозяина патогенным организмом, и в то же время они совершенно различны.

Инфицирование сои Rhizobium japonicum, очевидно, начинается с реакции бактерии на появление сигнальных и питательных веществ, выделяемых корнями хозяина. Клетки Rhizobium очень быстро прикрепля-ются к поверхности корня, и их можно обнаружить уже спустя несколько секунд или минут после инокуляции корней. Прикрепление бактерий чаще всего полярное. Следующий этап, наблюдаемый в инфекционном процессе, - скручивание корневых волосков. Скручивание и деформация последних специфически индуцируются клубеньковыми бактериями. Скручивание начинается спустя несколько часов после инокуляции и становится заметным примерно через 12 ч. Клубеньковые бактерии проникают в скрученные корневые волоски у точки наибольшего изгибания и внедряются в них в виде трубчатой структуры, называемой инфекционной нитью. Эти нити переносят клетки ризо-бий, обычно в виде одной цепочки, к основанию корневого волоска (к базальной клетке). Кончик растущей инфекционной нити, по-видимому, движется по пути ядра клетки хозяина. До того момента как инфекционная нить выйдет из базальной клетки волоска, в близлежащих кортикальных клетках происходит стимуляция деления и заполнения цитоплазмой. Инфекционные нити проникают через клеточную стенку, расположенную между клеткой корневого волоска и прилегающими к ней кортикальными клетками, и разветвляются, захватывая многие непрерывно делящиеся кортикальные клетки. Затем происходит высвобождение клеток клубеньковых бактерий из кончиков инфекционных нитей в цитоплазму клеток хозяина. Сразу же после высвобождения бактерии инкапсулируются цитоплазматическими мембранами клеток хозяина и, таким образом, никогда не вступают в прямой контакт с цитоплазмой хозяина. Клетки клубеньковых бактерий и расте-ния-хозяина пролиферируют, формируя структуры, называемые клубеньками, которые состоят из примерно равных в весовом соотношении масс бактерий и тканей растения. Хозяин обеспечивает ризобии продуктами фотосинтеза, а бактерии осуществляют превращение атмосферного N 2 в NH 3 , снабжая растения доступным азотом.

Это удивительный процесс, замечательный по специфике, механизмам действия, развитию и регуляторной утонченности. Наблюдение за ним и изучение его доставляет истинное наслаждение.

Мы начали систематическое и многоплановое изучение инфицирования con Rhizobium japonicum. Моими коллегами в этой работе были физиологи Арвинд Бхаг-ват, Маргарет Пирс и Т. В. Бхуванесвари, цитологи Джиллиан Терджен, Марк Пенс и Гарри Калверт, биохимик Эндрю Морт и специалисты по мутагенезу Ян Ло и Поко Ямамото. Исследования клубеньковых бактерий были начаты с изучения механизмов распознавания и специфичности по отношению к хозяевам. По крайней мере, для большинства бобовых растений, обитающих в зоне умеренного климата, существует четко выраженная специфичность к ризобиям. Например, Rhizobium meli-loti формирует клубеньки только с люцерной и не инфицирует клевер или другие виды бобовых. Штаммы R. japonicum образуют клубеньки лишь с соей, но не с люцерной, клевером и т. д.

Молекулярные основы специфичности хозяев и клубеньковых бактерий

Специфичность хозяина и механизмы распознавания в течение многих лет представляют обширную область исследований для фитопатологов, включая и тех специалистов, которые изучают симбиозы Rhizobium. В 1975 г. Альбершейм и Андерсон-Праути выдвинули теоретическое предположение о том, что в реакции распознавания в системах растение - патоген участвуют связывающие углеводы белки (т. е. лектины) хозяина, реагирующие с углеводами на поверхности клеточных стенок микроорганизмов. Почти одновременно Болул и Шмидт привели экспериментальное доказательство тесной корреляции между возможностью различных клубеньковых бактерий инфицировать сою и их способностью связывать меченый лектин в семенах этого растения. Мы проверили с максимальной тщательностью опыты Болула и Шмидта и подтвердили корреляцию между образованием клубеньков и связыванием лектина ризобиями. Однако в научной литературе отмечены некоторые отклонения от указанной закономерности:

Бретауэр и Пэкстон, Чен и Филлипс, Ло и Стрийдом привели данные, свидетельствующие об отсутствии корреляции между связыванием лекти-нов и образованием клубеньков у сои;

Некоторые штаммы R. japonicum очень активно образовывали клубеньки, но не связывали лектин сои;

У ряда штаммов ризобий в культуре лишь небольшое число клеток (1-5%) связывало лектин сои.

На основании наблюдений мы установили одну важную закономерность, а именно способность клеток Rhi-zobium japonicum связывать лектин сои резко меняется с возрастом культуры. Это открытие позволяет предположить, что появление или исчезновение соединений, служащих рецепторами лектина, на поверхности клеток Rhizobium каким-то образом регулируется. Изучив возможность синтеза рецептора лектина в зависимости от веществ, присутствующих в корнях хозяина, мы установили, что все испытанные штаммы R. japonicum связывают лектин сои при выращивании в присутствии корней хозяина, тогда как на лабораторных средах многие из штаммов не имели клеток, способных связывать лектин. Влияние корней на образование рецепторов лектина позволяет объяснить противоречивость в результатах опытов с теми штаммами бактерий, которые образовывали клубеньки, но не связывали лектин, а также понять отсутствие корреляции между этими процессами в опытах других исследователей. Однако нам до сих пор неизвестно, какое из веществ в корнях растения-хозяина ответственно за изменения в синтезе рецептора.

Рис.1. Влияние возраста культуры Rhizobium japo nicum штамм 110 ARS на число клеток, способных связывать лектин сои, и на образование клубеньков на первичных корнях выше отметки исходного положения кончика корня (см. текст) в момент инокуляции:

1 - число клеток/мл; 2 - процент клеток, связывающих лек-тин; 3 - число клубеньков выше отметки в пересчете на растение; 4 - процент растений, имеющих клубеньки выше отметки.

Целесообразно также отметить, что Даззо и Хаббелл установили аналогичную четкую корреляцию между связыванием лектина и образованием клубеньков в симбиотической ассоциации клевер/Rhizobium trifolii.

Стабильность корреляций со связыванием лектина в системе соя/R, japonicum позволяет рассмотреть еще два вопроса:

Можно ли утверждать, что подходящий лектин, находящийся на поверхности корней сои в нужное время и нужном месте, действительно играет роль в реакции узнавания?

Какова природа рецептора лектина сои на поверхности клеток Rhizobium japonicum?

Определенного ответа на первый вопрос в настоящее время пока нет. Лучшим доказательством в его пользу могут быть данные Стейси и др., которые показали, что меченые антитела, специфичные для лектина семян сои, связывались корнями сои в противоположность меченым антителам неспецифической сыворотки. Низкая плотность связывания меченых антител может объяснить причину трудного обнаружения лектина в корнях другими, более прямыми биохимическими методами.

Более полные и точные данные получены по второму вопросу. В соответствии с убедительными цитологическими и биохимическими экспериментами лектин сои связывается материалом капсулы, окружающей клетки Rhizobium japonicum. Меченный ферритином лектин сои связывается капсулярным материалом бактерий, но не внешней мембраной клеток. Эта связь биохимически специфична, что показано методом ингибирования гаптенами сахара, и свободна от влияния артефактов, возникающих при фиксации, как было установлено с помощью криоскалывания.

Мы выделили капсулярный материал у двух различных штаммов R. japonicum и установили, что он состоит из полисахарида, структура которого представлена на рисунке 2. Возможно, что наиболее важной особенностью капсулярного полисахарида (КПС) является наличие боковой галактознльной цепи в каждой повторяющейся единице полимера. Связывание лектина сои поверхностью бактериальной клетки особенно сильно ингибируется при добавлении галактозы или N-ацетнлгалактозамина, показывая, что галактозоподобные структуры составляют важную часть материала, специфически связывающего лектин. Галакто-зильные остатки КПС иногда содержат метильную группу в позиции 4. По данным Хаммарстрема и др., лектин сон не присоединяется к 4-О-метилгалак-тозе. Поэтому особый интерес представляло открытие изменения состава сахаров, входящих в КПС, с возрастом культур бактерий. В старых культурах галакто-зильные остатки в КПС чаще были 4-О-метилированы.

Рис. 2. Структура повторяющейся пентасахаридной единицы, образующей капсулярный полисахарид/экзополисахарид (КПС/ЭПС) в штаммах 110/138 R. japonicum:

Гл - глюкоза; Ма - манноза; ГУК - галактуроновая кислота; Га - галактоза; Ац - ацетат; Me - метнл.

Превращение неметилированной галактозы в метилированную происходит особенно быстро в период, когда бактериальные культуры переходят от экспоненциальной к стационарной фазе роста. В это же время происходит внезапное уменьшение числа инкапсулированных клеток и бактерий, способных связывать лек-тин сон. Изменения в составе КПС и в инкапсуляции объясняют внезапную потерю этими штаммами способности связывать лектин. Как будет показано дальше, при достижении стационарной фазы роста эти штаммы также внезапно теряют инфекционную способность. Пока не установлено, существуют ли какие-либо причинные взаимосвязи между изменениями химического состава КПС, связыванием лектина и инфекционностью Rhizo-bium.

Необходимо учитывать, что штаммы R. japonicum синтезируют как капсулярный полисахарид (КПС), присоединяющийся к хозяину, так и экзополисахарид (ЭПС), не соединяющийся с хозяином. По данным Дад-мена, некоторые штаммы R. japonicum образуют ЭПС, структура которого представлена на рисунке 3. Этот ЭПС, выделенный из культуральных фильтратов, достоверно не содержит галактозоподобных остатков, способных связывать лектин сои. Если последний выступает в роли ви-доспецифичного детерминанта в реакциях распознавания для всех бактерий, образующих клубеньки на сое, следовательно, эти штаммы R. japonicum должны, в свою очередь, также образовывать, по крайней мере в малых количествах, какой-то КПС или ЭПС с сайтом связывания лектина по типу галактозы. По некоторым предварительным данным, два штамма клубеньковых бактерий, которые образуют ЭПС рамнозного типа, способны также синтезировать небольшие количества галактозосодержащих КПС/ЭПС (Морт, неопубл. данные).

Способность клеток R. japonicum связывать лектнн сон строго зависит от наличия капсулярного материала на бактериях. Однако образование клубеньков от этого не зависит. Мутанты R. japonicum, не формировавшие заметных капсул в любой фазе роста как на лабораторных питательных средах, так и при культивировании с корнями хозяина, тем не менее довольно легко образовывали клубеньки на корнях сон. Важным детерминантом способности к образованию клубеньков является возможность синтезировать адекватные количества галактозосодержащего полисахарида. Между количеством образуемого ЭПС, синтезированного различными мутантами ризобий, и их относительной способностью формировать клубеньки существует линейная связь. С появлением некоторого количества галактозосодержащего полисахарида перестает иметь значение, связан ли он с клетками бактерий или находится в свободном состоянии.

Рис. 3. Структура повторяющегося мономера в тетрасахариде, входящем в состав ЭПС штамма 61А76 Rhizobium japonicum; обозначения те же, что и на рисунке 2 (Rha - рафиноза).

1. Взаимосвязь между синтезом ЭПС и формированием клубеньков на корнях сои различными мутантами Rhizobium japonicum, не дающими нормальные капсулы

Можно считать слишком упрощенной идею о том, что лектпны хозяина и полисахариды поверхности клеток Rhizobium - это единственные детерминанты специфичности и распознавания при взаимодействии симбионтов. Если Даззо и Стейси с соавт. считают, что лектнны хозяина ответственны за специфичное прикрепление гомологичных клубеньковых бактерий к поверхности хозяина, то другие исследователи особо выделяют индукцию специфических ответных реакций хозяина с помощью образования связей типа лек-тин - полисахариды. И все же, по-видимому, более вероятно, что эти реакции взаимодействия представляют собой лишь часть сложной последовательности взаимообменов между обоими симбионтами по принципу сигнал- ответ. Согласно этой точке зрения, каждый этап в такой последовательной цепи по-своему определяет общую биологическую специфичность симбиоза. Ни один из этапов процесса распознавания нельзя исключать только потому, что он не является первым или наиболее селективным, и в то же время нельзя считать, что первый или наиболее селективный этап будет полностью определять специфичность симбиотических отношений.

Ранние процессы при инфекциях, вызываемых RHIZOBIUM

Об инициации или раннем развитии инфекций, вызываемых клубеньковыми бактериями у их симбионтов, известно удивительно мало, хотя некоторые последние работы дают по этим вопросам ценную информацию. Как показано ранее, первое внешнее проявление инфекционного процесса - это прикрепление бактерий к поверхности корней хозяина. Клетки Rhizobium, как правило, прикрепляются полярно. По мнению Даз-зо, такое прикрепление определяется лектином хозяина и специфично для системы клевер/R, trifolii. Стейси с соавт. привели аналогичные данные в отношении R. japonicum на корнях сои. Однако мы установили, что и R. trifolii, и R. japonicum могут прикрепляться полярно к корням сои, причем при вполне сравнимых количестве и плотности (Терджен и Бауэр, не-опубл. данные). Характер прикрепления обоих видов практически не различался в условиях наших экспериментов. Независимо от того, является присоединение специфическим или неспецифическим, а иногда промежуточным, приходится признавать, что пока ничего не известно ни о клеточных и молекулярных компонентах, обусловливающих прикрепление, ни о механизмах действия этих компонентов.

Второе проявление инфекционного процесса - индукция скручивания корневых волосков. Функция этого явления заключается, по-видимому, в защемлении клеток Rhizobium в пространстве между двумя поверхностями клеточных стенок изогнутого корневого волоска. До сих пор никому не удалось определить вещества, индуцирующие скручивание или ветвление корневых волосков, не изучены и механизмы, с помощью которых происходит скручивание.

Третье проявление инфекционного процесса - формирование инфекционной нити. Недавние исследования Каллахэма дали очень важную информацию об этом процессе. Он предложил три возможных модели проникания Rhizobium в клетку хозяина:

Локальная инвагинация клеточной стенки корневого волоска;

Локальное разрушение клеточной стенки волоска с помощью индуцированных ферментов самого хозяина и синтез инфекционной нити;

Локальное разрушение клеточной стенки корневого волоска ферментами Rhizobium и синтез инфекционной нити.

Результаты исследований Каллахэма убедительно показали, что процесс инфицирования клевера бактерией R. trifolii включает локальное разрушение клеточных стенок корневых волосков вблизи от захваченных бактерий, связанное с локальным отложением нового слоя неидентифицированного материала, из которого формируется инфекционная нить. Это отложение очень напоминает образование футляра (чехла) вокруг инфицирующих гиф патогенных грибов. Цитологические исследования Каллахэма позволили исключить гипотезу об инвагинации клеточной стенки корневого волоска, однако не дали решения вопроса о том, чьими ферментами вызывается локальное разрушение клеточных стенок - ферментами хозяина или бактерии? Некоторые сообщения поддерживают оба возможных варианта, но не дают определенного ответа.

Множество вопросов, касающихся дальнейших этапов инфекционного процесса, также до сих пор не решено. Например, как может инфекционная нить проникать в клетку хозяина против ее тургорного давления? Почему (и как) кончик растущей инфекционной нити следует за движением ядра в клетке корневого волоска? Как инфекционная нить проникает в соседние кортикальные клетки? Каким образом стимулируется деление кортикальных клеток при развитии инфекционного процесса, вызываемого прониканием нити? Как могут клубеньковые бактерии избегать нормальных защитных реакций растений-хозяев или подавлять их?

К сожалению, серьезные методологические сложности мешают детальному изучению более ранних этапов инфекционного процесса. Сложности возникают из-за того, что в процессе инокуляции обычно участвует около 100 тыс. клеток бактерий и около 10 тыс. корневых волосков, однако инфекционный процесс инициируется не более чем в 100 случаях и лишь около 10 случаев инфекции завершается формированием клубеньков. Поэтому трудно рассмотреть механизмы или неиз-вестные этапы инфекционного процесса в 10 успешных или в целом в 100 случаях инфицирования корневых волосков на фоне 10 тыс. или даже большего количества неудачных или невосприимчивых взаимодействий хозяина и Rhizobium.

Рис. 4. Диаграмма, показывающая фазы инфекционного процесса, вызываемого клубеньковыми бактериями. Клубеньковые бактерии, заключенные в пространство между двумя поверхностями изогнутого корневого волоска, разрушают клеточную стенку хозяина (а), вызывают синтез нового слоя материала со стороны цитоплазмы клеточной стенки хозяина (б) и проникают через частичио разрушенную клеточную стенку корневого волоска в инфекциониую нить, сформировавшуюся из вновь отложившегося слоя (в).

Локализация инфицируемых клеток на корнях растения-хозяина

Для облегчения методики изучения биохимических механизмов процессов распознавания и инфицирования мы недавно решили определить, какие клетки корня хозяина восприимчивы к инфекции. Проростки растений выращивали в пластиковых пакетах, что позволяло вести визуальное наблюдение за развивающимися корнями. Положение кончиков корней (КК) и зоны образования корневых волосков отмечали на пластике в момент внесения инокулюма. Спустя неделю после инокуляции определяли положение каждого клубенька с учетом сделанных отметок. Если учесть перемещение эпидермальных клеток во время роста корня, можно вычислить положение и фазу развития тех клеток корня, которые были восприимчивы к инфицированию в момент инокуляции клубеньковыми бактериями. Графики (рис. 5. 5) четко показывают, что клубеньки наиболее часто образовывались на тех участках корней, которые находились непосредственно под зоной корневых волосков и над зоной быстрого растяжения. Относительно мало клубеньков формировалось в зоне развивающихся волосков корня, а на участках корней, в момент инокуляции покрытых зрелыми волосками, их вообще не было. Таким образом, способность к формированию клубеньков ограничена определенными фазами развития корней и кратковременностью существования клеток-мишеней, восприимчивых к бактериям. Эксперименты с более поздней инокуляцией сон показали, что весь участок корня выше кончика заметно теряет восприимчивость через 4-6 ч. У других видов бобовых способность к образованию клубеньков также кратковременна и ограничена определенными фазами развития.

Эти данные представляют несомненный теоретический и практический интерес. Например, капельки ино-кулирующей суспензии объемом в нанолитр, содержащие лишь несколько клеток клубеньковых бактерий, можно наносить непосредственно на участок наибольшей восприимчивости корня, и развитие Rhizobium произойдет именно в точке инокуляции. Этот метод позволил нам использовать электронный микроскоп для изучения самых ранних процессов, которые происходят еще до образования инфекционной нити, скручивания корневых волосков или каких-либо иных показателей начала инфекции, заметных в световом микроскопе. Проведение таких исследований возможно только при достаточной уверенности в том, что корневые волоски, взятые для приготовления ультратонких срезов, пригодны для этой цели и будут инфицированы клубеньковыми бактериями.

Рис. 5. Частота образования клубеньков в различных зонах корней сои, инокулированных штаммом 110 R. japonicum. Растения выращивали в пластиковых пакетах, на поверхности которых были сделаны отметки, показывающие положение коичика корня (RT) и место наименьшего развития корневых волосков (SERH). Корни приблизительно 120 растений исследовали через неделю после инокуляции, определяя относительное (%) расстояние от каждого клубенька, образовавшегося на первичном корне, до RT. Для более легкого определения относительного положения неинфицированных клеток кория во время инокуляции рассчитано перемещение эпидермальных клеток относительно RT.

Вещества, влияющие на интенсивность начальных процессов инфекции

Не менее интересный аспект исследований темпов развития восприимчивости бобовых растений к клубеньковым бактериям состоит в том, что в настоящее время появилась возможность изучать факторы, влияющие на скорость инициации успешного инфицирования. Число клубеньков, развивающихся над кончиком корня (RT) выше сделанной на пластике отметки, служит прекрасным количественным параметром развития инфекции. Например, Бхагват (личное сообщение) недавно обнаружил, что образование клубеньков некоторыми ризобиями на корнях коровьего гороха происходит непосредственно под меткой, если бактерии культивировали на среде вместе с корнями хозяина перед инокуляцией. Эти результаты позволяют предположить, что Rhizobium могут адаптироваться или отвечать каким-то образом на вещества, выделяемые из корня хозяина, прежде чем они приобретут способность к инфицированию.

У сои можно наблюдать обратное явление. Образование клубеньков на корнях сои выше отметки RT мало зависит от предварительного культивирования R. japonicum в корневых экссудатах хозяина. Однако образование клубеньков с максимальной частотой происходит ниже зоны развития корневых волосков, хотя даже цитологические исследования показали, что инфекция, приводящая к образованию клубеньков, происходит через короткие, только начинающие развиваться корневые волоски. Различия между локализацией ожидаемой и действительной зоны максимального образования клубеньков привели нас к заключению о наличии определенного лаг-периода между временем первого взаимодействия клеток корней с бактериями и временем начала успешного инфекционного процесса в них. Очевидно, этот лаг-период можно сократить, предварительно обработав корни клеточным полисахаридом клубеньковых бактерий. N-ацетилгалактоза, возможный полисахаридный гаптен лектина сон, также эффективен в этом отношении. Такие эксперименты трудны для точного воспроизведения, но нам удалось найти способы, позволяющие контролировать большую часть меняющихся показателей.

Относительное расстояние между клубеньками и меткой у кончика корня (RT)

Рис.6. Влияние экссудатов коровьего гороха на развитие клубеньковых бактерий:

1 бактерии на экссудатах корней; 2 - бактерии на синтетической питательной среде.

Рис. 7. Влияние бесклеточ-ного фильтрата Rhizobium tri-folii на образование клубеньков в зоне зрелых корневых волосков у клевера. Корни клевера предварительно обработали 100 мкл воды (4) или культурального фильтрата в течение 6, 14 и 24 ч (на графике - 1, 2, 3 соответственно) до внесения инокулюма. Число клубеньков. образовавшихся в зоне корней со зрелыми корневыми волосками в момент инокуляции, определяли ежедневно в течение недели.

Аналогичное явление отмечено и в корнях клевера. Если культуру R. trifolii отмыть, ресуспендировать в дистиллированной воде в течение часа и затем отфильтровать, то свободный от клеток фильтрат заметно сокращает время, необходимое для образования клубеньков в зоне зрелых корневых волосков, при обработке корней этим фильтратом перед инокуляцией. Интересно отметить, что такая же обработка корней клевера не отражалась заметно на времени образования клубеньков в зоне без корневых волосков.

Фильтрат действует на образование клубеньков только в зоне зрелых корневых волосков, очевидно, влияя на второй тип инфекции, характерный для клевера, но не отмеченный у сои, коровьего гороха или люцерны.

Активные соединения, присутствующие в фильтратах суспензий R. trifolii или в корневых экссудатах коровьего гороха, до сих пор не идентифицированы. Тем не менее обнаружение их действия подтверждает точку зрения на то, что взаимное распознавание клубеньковых бактерий и их хозяев представляет комплекс реакций, происходящих между симбионтами по типу сигнал - ответ.

Инфекционная способность клеток RHIZOBIUM

К инфицированию ризобиями восприимчивы только определенные клетки корней бобовых, причем восприимчивость зависит от времени и фазы развития растения. Что же можно сказать о клубеньковых бактериях? Зависит ли инфекционная способность Rhizobium от времени, фазы развития или среды? Влияние корневых экссудатов коровьего гороха на формирование клубеньков ризобиями позволяет предположить, что, по крайней мере, некоторые виды бактерий должны подвергаться определенным изменениям, прежде чем они будут способны вызвать инфекцию. Конечно, даже в одной культуре клетки Rhizobium могут отличаться друг от друга множеством признаков. Например, они могут иметь разные способность к инкапсуляции, подвижность, фазы клеточных циклов, число полярных телец. Возможно, что инфекционная способность зависит от одного или нескольких подобных специфических признаков. Из вышеприведенных данных следует, что в отличие от синтеза ЭПС инкапсуляция сама по себе, видимо, не связана с инфекционной способностью. По данным недавних исследований, инфекционная способность клубеньковых бактерий не зависит от их подвижности.

Работы, проведенные в нашей лаборатории, позволили установить, что инфекционность R. japonicum в значительной мере зависит от возраста культуры. Культуры штаммов 110 и 138 R. japonicum, достигнув фазы стационарного роста, быстро теряли способность вызывать образование клубеньков выше отметки RT. Очевидно, в этой фазе бактерии в меньшей мере готовы или способны вызвать инфекционный процесс во время инокуляции, чем клетки в экспоненциальной фазе. Основа этого изменения к концу экспоненциальной фазы не известна. Изучение влияния дозы инокулюма на процесс образования клубеньков показало, что культуры штамма 110 R. japonicum, находящиеся в ранней или поздней фазе стационарного роста, могут индуцировать образование клубеньков так же быстро и интенсивно, как и культуры в фазе экспоненциального роста, однако для инокуляции растений необходимо большее количество инокулюма старых культур.

Следовательно, различия в инфекционной способности между культурами бактерий в экспоненциальной или стационарной фазе роста являются скорее количественными, чем качественными. Находящиеся в стационарной фазе роста культуры, по-видимому, содержат в пропорциональном отношении меньшее число клеток, способных быстро вызывать инфекцию.

Заслуживает внимания еще один аспект образования симбиотических ассоциаций. Графики частот образования клубеньков показывают ослабление интенсивности этого процесса в нижних участках корней, которые в момент инокуляцин были на 5- 10 ч моложе, чем участки с максимальной активностью образования клубеньков. Очевидно, растения сои обладают быстродействующим регуляторным механизмом, служащим для предупреждения развития излишнего числа клубеньков на корнях. Второе возможное объяснение состоит в том, что убывание числа клубеньков в нижних участках корней может быть связано с уменьшением числа бактерий, приходящихся на долю этих частей. Однако, если эти же корни повторно инокулировали спустя 10-12 ч после первого нанесения бактерий, никаких изменений в образовании клубеньков не происходило, т. е. необходимости в повышении численности бактерий не было. В то же время если первичный инокулюм был нанесен только на верхнюю часть корня без корневых волосков и на зону молодых, развивающихся волосков, где удлинение корня полностью или большей частью завершено, то вторичная инокуляция вызывала формирование новых клубеньков. Этот эксперимент показывает, что быстродействующий регуляторный механизм в растении сон включает в себя некоторые типы взаимодействий между Rhizobium и теми клетками хозяина, которые локализованы в зоне быстрого удлинения корня вблизи от его кончика.

Наличие быстродействующего регуляторного механизма в растениях сои и, возможно, коровьего гороха и люцерны создает дополнительный уровень сложности и организации в динамическом влиянии фаз развития и окружающей среды на раннее развитие и успех инфекций клубеньковыми бактериями.

Используемая литература: Инфекционные болезни растений: физиологические и биохимические основы/Пер. с англ. Л. Л. Великанова, Л. М. Левкиной,
В. П. Прохорова, И. И. Сидоровой; Под ред. и с предисл.
Ю. Т. Дьякова. - М.: ВО Агропромиздат, 1985. - 367 с.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Клубеньковые бактерии специфичны - отдельные виды или расы их способны образовать клубеньки на корнях лишь определенных бобовых. Так, одни из них развиваются только на корнях клевера, но не могут заражать корни гороха, люцерны, люпина и других бобовых. Группы бактерий, которые образуют клубеньки на корнях люпина и сераделлы, не заражают корни клевера и гороха и т. д. Иногда специфичность клубеньковых бактерий настолько сильно выражена, что различные разновидности од но Г? и той же культуры (или даже сорта растений) по-разному относятся к тому или другому штамму бактерии. Например, корни желтого кормового люпина не всегда хорошо заражаются клубеньковыми бактериями из корней однолетних горьких люпинов. Группы клубеньковых бактерий по их специфичности указаны на странице 382.[ ...]

Клубеньковые бактерии наиболее интенсивно развиваются при реакции почвы, близкой к нейтральной. Поэтому при посевах бобовых на кислых почвах наряду с инокуляцией семян необходимо известкование почвы. Инокуляция без известкования оказывает очень слабое влияние на урожай и содержание белка. По данным К. Филлерса, при выращивании сои на кислой почве без инокуляции и без внесения извести содержание белка в семенах составляло 32,8%, при инокуляции содержание белка увеличилось на 1,2%, а при нейтрализации кислотности почвы и инокуляции содержание белка в семенах возросло на 11,2%.[ ...]

Клубеньковые бактерии различных бобовых растений погибают в кислых почвах.[ ...]

Клубеньковые бактерии нуждаются в достаточном притоке к ним углеводов, фосфора и кальция. В последние годы установлено, что и ряд микроэлементов (особенно молибден) играет важную роль в жизнедеятельности клубенько вых бактерий. Известкование и применение молибдена под бобовые на кислых почвах регулируют реакцию почвы; достаточная обеспеченность бобовых фосфором нужна на всех почвах.[ ...]

Прокариоты (бактерии, архебактерии, цианобактерии) - одноклеточные организмы, не имеют ядра. Благодаря такому разнообразному метаболизму бактерии могут существовать в самых различных условиях среды: в воде, воздухе, почве, живых организмах. Велика роль бактерий в образовании нефти, каменного угля, торфа, природного газа, в почвообразовании, в круговоротах азота, фосфора, серы и других элементов в природе. Сапротрофные бактерии участвуют в разложении органических останков растений и животных и в их минерализации до С02, Н20, Н28, 1ЧН3 и других неорганических веществ. Вместе с грибами они являются редуцентами. Клубеньковые бактерии (азотфикси-рующие) образуют симбиоз с бобовыми растениями и участвуют в фиксации атмосферного азота в минеральные соединения, доступные растениям. Сами растения такой способностью не обладают.[ ...]

При отсутствии клубеньковых бактерий на корнях бобовых культур они становятся такими же потребителями азота из почвы, как и другие растения.[ ...]

Важным свойством клубеньковых бактерий является их активность (эффективность), т. е. способность в симбиозе с бобовыми растениями ассимилировать молекулярный азот и удовлетворять в нем потребности растения-хозяина. В зависимости от того, в какой степени клубеньковые бактерии способствуют повышению урожайности бобовых культур (рис. 146), их принято делить на активные (эффективные), малоактивные (малоэффективные) и неактивные (неэффективные).[ ...]

Среди азотфиксирующих бактерий выделяют свободноживу-щих в почве и клубеньковых, живущих на корнях бобовых растений (рис. 9, з). Наиболее важными представителями свобод-ноживущих азотфиксирующих бактерий являются Azotobacter и Clostridium, связывающие за год несколько десятков килограммов азота на 1 га почвы. Значительно более эффективна деятельность клубеньковых бактерий, заражающих клетки корней бобовых. В результате под бобовыми происходит микробиологическое накопление доступного для растений азота. Под площадью в 1 га, засеянной клевером, в результате действия этих бактерий может быть накоплено в 100 раз больше азота, чем свободноживущими фиксаторами этого элемента.[ ...]

Поскольку размножение клубеньковых бактерий в отсутствие влаги не происходит, в случае засушливой весны инокулированные (искусственно зараженные) семена необходимо вносить глубже в почву. Например, в Австралии семена с нанесенными на них клубеньковыми бактериями глубоко заделывают в почву. Интересно, что клубеньковые бактерии почв засушливого климата более стойко переносят засуху, чем бактерии почв влажного климата. В этом проявляется их экологическая приспособленность.[ ...]

Кроме специфичности, расы клубеньковых бактерий различаются по вирулентности и активности. Вирулентность - способность их проникать через корневые волоски в корень бобового растения и образовывать клубеньки. Активностью клубеньковых бактерий называют способность их к усвоению азота атмосферы. Только активные штаммы этих бактерий снабжают бобовые растения азотом. При заражении корней вирулентными, но неактивными клубеньковыми бактериями образуются клубеньки, но фиксации азота не происходит. Клубеньковые бактерии, используемые для приготовления нитрагина, должны обладать большой вирулентностью и высокой активностью. Если вирулентность клубеньковых бактерий нитрагина выше вирулентности уже находящихся в почве менее активных бактерий, то это позволяет клубеньковым бактериям нитрагина проникать в корень быстрее и в большом количестве.[ ...]

Из всех этих примеров симбиоз »клубеньковых бактерий с бобовыми изучен наиболее тщательно, поскольку эти растения имеют для человека огромное значение.[ ...]

Большое влияние на жизнедеятельность клубеньковых бактерий и образование клубеньков оказывает реакция почвы. Для разных видов и даже штаммов клубеньковых бактерий значение pH среды обитания несколько различно. Так, например, клубеньковые бактерии клевера более устойчивы к низким значениям pH, чем клубеньковые бактерии люцерны. Очевидно, здесь также сказывается адаптация микроорганизмов к среде обитания. Клевер растет на более кислых почвах, чем люцерна. Реакция почвы как экологический фактор оказывает влияние на активность и вирулентность клубеньковых бактерий. Наиболее активные штаммы, как правило, легче выделить из почв с нейтральными значениями pH. В кислых почвах чаще встречаются неактивные и слабовирулентные штаммы. Кислая среда (pH 4,0- 4,5) оказывает непосредственное влияние и на растения, в частности нарушая синтетические процессы обмена веществ растений и нормальное развитие корневых волосков.[ ...]

Существует большое количество видов и рас клубеньковых бактерий, каждая из которых приспособлела к заражению одного или нескольких видов бобовых растений. Корневые системы бобовых растений обладают специфическими корневыми выделениями. Благодаря этому клубеньковые бактерии скопляются вокруг корневых волосков, которые при атом снручиваготся. Через корневой волосок бактерии в виде сплошного тяжа, состоящего из соединенных слизью бесчисленных бактерий, проникают в паренхиму корня. Вовможпо, бактерии выделяют гормон ауксин в именно ато является причиной разрастания тканей, образуются вздутия - клубеньки. Клетки клубеньков заполняются быстро резмножающимися бактериями, но остаются живыми и сохраняют крупные ядра. Клубеньковые бактерии заражают только полиплоидные клетки корня.[ ...]

Люцерна как бобовое растение способна с помощью клубеньковых бактерий на корнях накапливать большое количество азота в почве, не уступая в этом отношении клеверу. Корневая система ее лучше развивается в 1-й год пользования, а к 3-му году накапливает азота в почве 120...200 кг/га. Повышая плодородие почвы, улучшая ее структуру, люцерна является хорошим предшественником в севообороте.[ ...]

При возделывании люпинов для повышения активности клубеньковых бактерий люпина применяют нитрагин, полезны также борные и молибденовые микроудобрения (семена обрабатывают раствором молибденовокислого аммония одновременно с их нитрагинизацией).[ ...]

Анаэробный распад целлюлозы осуществляется только бактериями (например, бациллой Омелянского), а аэробный -многими видами бактерий, грибами, актиномицетами.[ ...]

Это указывает, что фиксированный меченый азот попадает в тела бактерий из тканей высшего растения, которое является источником азотного питания для бактерий. Таким образом, фиксация атмосферного азота локализована не в теле клубеньковых бактерий, а в клубеньковой ткани высшего растения. Важная роль клубеньковых бактерий заключается в том, что они индуцируют образование этой специфической клубеньковой ткани. Дальнейшие исследования показали, что максимальное содержание меченого азота в отдельных азотистых фракциях клеточного сока клубеньков всегда приходится на амидную группу аспарагина и глутамина. Так как эта группа может рассматриваться как трансформированный аммиак, то именно аммиак и является конечным неорганическим продуктом биологической фиксации азота.[ ...]

В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при нормальных температуре и давлении, благодаря высокой эффективности биокатализа. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд т азота в год (мировой объем промышленной фиксации - около 100 млн т). В клубеньковых бактериях бобовых растений фиксация азота осуществляется с помощью сложного ферментного комплекса, защищенного от избытка кислорода специальным растительным гемоглобином.[ ...]

Одной из причин положительного влияния молибдена на фиксацию молекулярного азота клубеньковыми бактериями является повышение под его действием активности также и дегидрогеназ, которые обеспечивают непрерывный приток активированного водорода, необходимого для восстановления атмосферного азота.[ ...]

Ценность нового препарата нитрагина состоит в длительности сохранения жизнеспособности клубеньковых бактерий и возможности заблаговременного изготовления препаратов механизированным способом. По эффективности сухой нитрагин близок к почвенному. Его можно применять в виде дуста, опудривая семена без их намачивания.[ ...]

Особенно значима в круговороте азота роль симбиотических (от греч. симбиоз - сожительство) клубеньковых бактерий, локализующихся на корнях растений преимущественно семейства бобовых. Бактерии родов азотобактер или ризобиум способны путем ферментативного расщепления молекул N3 фиксировать атмосферный азот и делать его доступным корневым системам растений.[ ...]

Биологическая фиксация молекулярного азота атмосферы в почве осуществляется двумя группами бактерий: свобод-ноживущими аэробными и анаэробными и клубеньковыми бактериями, живущими в симбиозе с бобовыми растениями. Важнейшим представителем первой группы из аэробов является Azotobacter, а из анаэробных - Clostridium pasteu-rianum. Благоприятная среда для активной деятельности клубеньковых бактерий - хорошо аэрируемые почвы со слабокислой и нейтральной реакцией. Деятельность бактерий азотфиксаторов имеет важное значение в общем балансе азота в земледельчески используемых почвах. Поэтому для деятельности клубеньковых бактерий важно проводить окультуривание почв. Чтобы увеличить численность клубеньковых бактерий, в почву вносят бактериальный препарат нитрагин, содержащий активные расы клубеньковых бактерий.[ ...]

По данным НИИ сельскохозяйственной микробиологии, в ряде почв соответствующие той или иной бобовой культуре клубеньковые бактерии могут отсутствовать, а те, что имеются, обладают малопродуктивной системой азотфиксации. В связи с этим микробиологи провели селекционную работу. В итоге каждые три года на заводы передаются до десяти новых штаммов клубеньковых бактерий, азотфиксирующая способность которых на 10-20% превышает предыдущие эталонные штаммы. Создан и массово производится препарат ризоторфин - удобная и практичная форма поставки клубеньковых бактерий к семенам и растущим корням бобовых.[ ...]

Органические и минеральные удобрения (фосфорнокалийные), внесенные в почву, значительно улучшают способность клубеньковых бактерий усваивать атмосферный азот. Для активизации деятельности клубеньковых бактерий кислые почвы необходимо известковать, а почвы в засушливых районах - обеспечивать влагой.[ ...]

Мутуализм - это взаимодействие между двумя организмами разных видов, которое выгодно для каждого из них. Например, азотфиксирующие клубеньковые бактерии обитают на корнях бобовых растений, конвертируя атмосферный азот в форму, доступную для усвоения этими растениями. Следовательно, бактерии обеспечивают растения азотом. В свою очередь растения обеспечивают клубеньковые бактерии всеми необходимыми питательными веществами. Мутуализмом можно считать также взаимодействие между микроорганизмами, обитающими в толстом отделе кишечника человека, и самим человеком. Для микроорганизмов выгода определяется тем, что они обеспечивают свои питательные потребности за счет содержимого кишечника, а для человека выгода состоит в том, что микроорганизмы осуществляют дополнительное переваривание пищи и еще синтезируют крайне необходимый для него витамин К. В мире цветковых растений мутуализмом является опыление насекомыми растений и питание насекомых нектаром растений. Мутуализм значим и в «переработке» органических веществ. Например, переваривание целлюлозы в желудке (рубце) крупного рогатого скота обеспечивается содержащимися в нем бактериями.[ ...]

Особенность питания бобовых культур заключается в том, что они не нуждаются в наличии минеральных соединений азота в почве. В симбиозе с клубеньковыми бактериями бобовые растения используют свободный азот атмосферы. Поэтому эти культуры являются источником биологического азота для сельского хозяйства.[ ...]

В связи с этим в практику сельского хозяйства прочно вошел прием инокуляции - предпосевная обработка семян бобовых растений препаратом клубеньковых бактерий соответствующего вида. В разных странах технический препарат для инокуляции бобовых растений получил разные наименования. В СССР, ГДР, ФРГ и Польше он назван нитрагином. Отсюда прием инокуляции соответствующих культур в этих странах называется нитраги-низацией. Нитрагин повышает урожай бобовых растений на 10-15%, а в новых районах возделывания - на 50% и более.[ ...]

Как было отмечено выше, на кислых почвах клевер растет плохо, часто изреживается, а иногда выпадает совсем и даже в 1-й год пользования. Жизнедеятельность клубеньковых бактерий на таких почвах подавляется. Кислотность почв, особенно в северо-западных областях Нечерноземной зоны (здесь более половины пашни имеет повышенную кислотность), при наличии в них подвижных форм алюминия является одной из причин снижения урожайности трав.[ ...]

Фиксация атмосферного азота. Ни одно зеленое растение не может питаться непосредственно азотом атмосферы. Так как в результате деятельности денитрифицирующих бактерий непрерывно идет уменьшение в природе запасов связанного азота и перевод его в атмосферный азот, то жизни начземле грозила бы неминуемая гибель из-за азотного голода. Однако существует группа микроорганизмов, способная связывать атмосферный азот, делая его доступным для растений. Эти микроорганизмы называются азотфиксирующими бактериями, они разделяются на клубеньковые бактерии, развивающиеся на корнях бобовых растений, и на свободно живущие в почве.[ ...]

В результате этих исследований было найдено, что фиксированный бобовыми меченый газообразный азот атмосферы первоначально в больших количествах содержится только в клеточном соке клубеньковой ткани, представляющей гипертрофированную корневую ткань бобовых, откуда он затем постепенно переходит в другие органы растений. В клубеньковых бактериях меченый азот при экспозиции растений от 6 до 48 часов совершенно отсутствует или содержится в крайне незначительных количествах, обычно не выходящих за пределы возможной ошибки эксперимента (табл. 4).[ ...]

Кроме того, П. С. Коссовичу принадлежат не потерявшие и до настоящего времени значения исследования круговорота в природе и хозяйстве серы и хлора, а также доказательство положения, что клубеньковые бактерии связывают азот атмосферы, поступивший через корни, а не через листья бобовых растений. Он с успехом изучал и корневые выделения культур, особенно выделение углекислого газа, связывая его с усвояющей способностью корней.[ ...]

Сообщество организмов, основанное на обоюдной пользе, когда два вида создают друг другу благоприятную среду для развития, называется симбиозом. Примером могут служить взаимоотношения между клубеньковыми бактериями и бобовыми растениями. Клубеньковые бактерии получают от бобового растения безазотис-тые органические вещества и минеральные соли, а взамен предоставляют ему азотистые вещества, синтезированные ими из атмосферного азота.[ ...]

К аминоавтотрофам относятся микроорганизмы, использующие азот аммиачных солей, азотнокислых солей и мочевину. Аминоавтотрофы при использовании азота минеральных соединений предварительно переводят его в аммиачный азот, а затем потребляют для построения аминокислот, из которых синтезируют белки. Предварительный перевод азота в аммиак объясняется тем, что в составе микробной клетки азот находится в восстановленном состоянии в форме амино- (NH2) и иминогрупп (NH). Роль азота в белковых веществах протоплазмы бактерий состоит в том, что он придает белкам реактивность. Азот трудно входит в состав соединений из-за инертности, но легко из них выходит.[ ...]

Влияние предшественника сказывается прежде всего на обеспеченности удобряемой культуры азотом. Растения, высеваемые после бобовых, оставляющих некоторое количество азота, ассимилированного клубеньковыми бактериями из атмосферы, лучше отзываются на фосфор, чем следующие по другим предшественникам. С. П. Кулжинский (1935) иллюстрировал это положение данными украинских опытных станций (табл. 72).[ ...]

За последнее время накапливается все больше данных о том, что многие лизогенные культуры содержат 2, 3, 4 и более умеренных фагов, т. е. являются полилизогенными. Например, многие актиномицеты, проактиномицеты, клубеньковые бактерии и некоторые спороносные бактерии содержат 4 и более фагов. Содержащиеся в полилизогенных культурах фаги часто резко различаются между собой по форме частиц, антигенным свойствам и спектру лити-ческого действия. Полилизогенные культуры можно экспериментально получить с помощью воздействия на них одновременно или последовательно различными умеренными фагами. Полученные таким способом культуры не отличаются от выделенных из природных источников.[ ...]

Эти изменения могут быть как положительными для плодородия, так и отрицательными. Примером положительных изменений является устранение избыточной кислотности в результате известкования, накопление азота за счет деятельности клубеньковых бактерий при посевах бобовых, удаление вредных солей в орошаемых почвах после их промывок, улучшение водно-воздушного режима за счет рыхления подпахотного слоя и т. д.[ ...]

Зеленое удобрение прежде всего обогащает почву органическим веществом и азотом. Нередко, й зависимости от условий его применения, на гектаре пашни запахивают 35-45 т органической массы, содержащей 150- 200 кг азота, фиксированного из воздуха клубеньковыми бактериями (при посеве бобовых сидератов).[ ...]

Мутуализм (симбиоз): каждый из видов может жить, расти и размножаться только в присутствии другого. Симбионтами могут быть только растения, или растения и животные, или только животные. Характерным примером пищеобусловленных симбионтов являются клубеньковые бактерии и бобовые, микориза некоторых грибов и корни деревьев, лишайники и термиты.[ ...]

Однако в природе и хозяйстве имеются существенные различия в круговороте азота и фосфора. Как известно, воздух почти на 4Д состоит из молекулярного азота. И хотя он недоступен высшим растениям, но усваивается некоторыми микроорганизмами, в частности клубеньковыми бактериями, которые живут на корнях бобовых культур. Эти бактерии снабжают азотистой пищей не только бобовые. При запахивании в почву пожнивных остатков и разложении корней остается достаточное количество азота для культуры, высеваемой после бобовых, особенно после клевера и люцерны.[ ...]

Горох только в том случае обогащает почву азотом, когда на его корнях развиваются клубеньки, при этом чем больше и мощнее, тем лучше почва обогащается азотом. В этих целях семена гороха необходимо в день посева обработать нитрагином под навесом, предохраняя азотфиксирующие бактерии от губительного воздействия солнечных лучей. Содержимым одной бутылки нитрагина, растворенного в 2 л воды, смачивают семена, перелопачивая их. Подсохшие семена без промедления высевают. Нитрагиниза-ция вызывает раннее образование клубеньков и содействует лучшему развитию растений. Применение нитрагина эффективно при раннем посеве гороха во влажную почву. На неизвесткованных кислых почвах клубеньковые бактерии развиваются плохо и действие нитрагина резко снижается.[ ...]

Типичным примером симбиоза может служить тесное сожительство между грибами и водорослями, приводящее к образованию более сложного и более приспособленного к природным условиям растительного организма - лишайника. Другим ярким примером симбиотического сожительства в почве является симбиоз грибов с высшими растениями, когда грибы образуют на корнях растений м и-к о р и з у. Явно выраженный симбиоз наблюдается между клубеньковыми бактериями и бобовыми растениями.[ ...]

Д. Н. Прянишников доказывал, что для нашей страны более перспективно не травополье, а интенсивные плодосменные севообороты. Именно они пришли на смену трехполью зернового типа, господствовавшему на протяжении тысячи лет в Западной Европе. При трехполье треть земли пустовала (поздний пар), а две трети засевались зерновыми культурами. Бобовые не возделывали, что исключало возможность мобилизации азота воздуха с помощью клубеньковых бактерий и отрицательно сказывалось на азотном питании растений и круговороте азота в земледелии. В этом севообороте почти отсутствовали пропашные, в том числе картофель и корнеплоды, что приводило к засоренности полей и постоянному недостатку кормов. На протяжении столетий крестьянское хозяйство (за исключением кулацкой верхушки) не могло вырваться из порочного круга, отмеченного известным русским агрономом XVIII в. А. Т. Болотовым, который писал: «...без навоза земля не дает урожая, а навоза мало, так как мало скота, а скота мало, так как мало кормов, а кормов мало, так как без навоза земля не дает урожая» (1779).[ ...]

Трудности хранения, транспортировки и применения агаровых и бульонных препаратов нитрагина, а также небольшой срок их годности являются серьезными причинами, способствующими вытеснению этого препарата из производства. Сыпучие порошковидные препараты нитрагина обладают несомненными преимуществами по сравнению с агаровыми и бульонными. Технология их изготовления проще и экономичнее. Торфяные культуры дольше хранятся и легче транспортируются. Они защищают клетки клубеньковых бактерий от непосредственного контакта с удобрениями и сохраняют их в жизнеспособном состоянии на семенах, особенно при гранулировании семян с известью.[ ...]

Высшее растение по схеме является источником углеродсодержащих соединений. Их трансформация обеспечивает получение энергетического материала для процессов активации и восстановления N2. Активированный азот - конечный акцептор электронов. Продукты неполного окисления углеродсодержащих соединений служат акцепторами 1ЧНз и в клубеньках образуют аминокислоты, которые становятся доступными высшему растению. Растения выполняют роль накопителя углеродсодержащих соединений (продуктов фотосинтеза) и поставщика энергии. Клубеньковые бактерии в стадии бактероидов проявляют способность с помощью нитрогеназы переносить активированный водород к азоту. Путь от N2 до Т Шз рассматривается как восстановительный процесс.[ ...]

Растения гороха обладают способностью усваивать азот из воздуха, обогащая им почву, в связи с чем основным направлением в системе удобрения должно быть применение фосфорных и калийных удобрений. Хорошо развитая корневая система гороха отличается высокой усвояющей способностью питательных веществ, однако для значительного увеличения урожая нельзя рассчитывать на использование последействия удобрений в севообороте, в связи с чем необходимо непосредственное внесение минеральных удобрений под горох. Он отзывчив на применение фосфорных и калийных удобрений. Фосфор способствует ускорению созревания растений. При недостатке его в почве клубеньковые бактерии слабо развиваются на корнях, и урожай снижается. При недостатке калия листья желтеют, и бобы плохо развиваются, особенно на легких по механическому составу почвах. На кислых почвах горох резко снижает урожай, ослабляется деятельность клубеньковых бактерий. Поэтому известкование кислых почв является обязательным условием повышения урожая гороха и более высокой эффективности внесенных минеральных удобрений. Доза извести зависит от кислотности почвы (3...6 т/га), известь лучше вносить под предшествующие культуры.[ ...]

Одним из наиболее важных процессов взаимодействия микроорганизмов с высшим растением является симбиотическая фиксация атмосферного азота - основного элемента, определяющего величину и качество урожая. Общее количество молекулярного азота, вовлекаемого в биологический круговорот симбиотической бобово-ризоби-альной системой, только в СССР составляет ежегодно 3 млн т. Многолетний отечественный и зарубежный опыт показывает, что эффективный бобово-ризобиальный симбиоз - не только залог получения высокого и качественного урожая бобовых культур, а следовательно, и возможности решения проблемы пищевого белка, но и наиболее экономичный источник пополнения запасов азота в почве. Для использования дешевого ’’биологического азота” в сельскохозяйственном производстве многих стран увеличивают посевные площади под бобовыми культурами, а также широко применяют предпосевную обработку семян препаратами клубеньковых бактерий, получаемых на основе активных штаммов Rhizobium. Характер и эффективность симбиотических взаимоотношений бобового растения с клубеньковыми бактериями зависят от физиолого-биохимического состояния обоих партнеров, в связи с чем влияние каких-либо факторов на одного из них непременно отражается на продуктивности системы в целом.