Вакуумная деаэрация воды как работает. Деаэратор - что это такое? Виды, устройство, принцип работы. Деаэрация подпиточной воды

Cтраница 1


Вакуумные деаэраторы работают при вакууме 540 - 900 Па, при этом температура кипения воды составляет 40 - 70 С.  

Вакуумные деаэраторы (типа ДВ) применяют чаще всего для дегазации подпиточной воды систем теплоснабжения на ТЭЦ и в котельных. Нормы качества воды (О2, СО2) приведены в гл. Остаточная концентрация кислорода в деаэрированной питательной воде не должна превышать значения, указанного в табл. 6.3. Свободный СО2 в деаэрированной воде должен отсутствовать.  

Вакуумные деаэраторы могут работать и по способу холодной деаэрации. Такая деаэрация происходит при температуре воды, поступающей в деаэратор, ниже температуры кипения в нем.  

Вакуумный деаэратор может работать с нагревом воды в колонке деаэратора или по способу деаэрации перегретой воды, или по способу холодной деаэрации.  

Схема деаэрации химочищенной воды и конденсата пара в конденсаторе деаэраторным конденса-тооборником.  

Вакуумные деаэраторы в схемах химводоочисток включают по-разному в зависимости от схем химводоочисток.  

Вакуумный деаэратор может работать и в качестве декарбонизатора в схемах химводоочисток с Н - катиони-товыми фильтрами.  

Вакуумные деаэраторы обладают статической (см. стр. Динамическая саморегулирующая способность заключается в изменении поступления пара в деаэратор при изменении давления в нем.  

Вакуумные деаэраторы, Энергетика и электротехническая промышленность, № 2, 1965, Киев.  

Схема вакуумной аэрационной установки.  

Вакуумные деаэраторы, имеют распространение в системах горячего водоснабжения для термической деаэрации подпиточ-ной воды тепловых сетей, а также питательной воды котлов низкого давления и малой мощности.  

Вакуумные деаэраторы применяются в схемах ВПУ перед анионитными фильтрами II ступени, а также для деаэрации подпиточной воды тепловых сетей и питательной воды котлов низкого давления. По способу распределения воды и пара деаэраторы разделяются на струйные, пленочные и барботаж-ные. Интервал рабочего давления в них составляет 0 0075 - 0 05 МПа. Это обстоятельство предъявляет особые требования к герметичности аппаратов. К недостаткам вакуумных деаэраторов следует отнести также необходимость иметь устройства для создания вакуума и отвода выпара, большую, чем для других типов деаэраторов, металлоемкость, дополнительные энергетические затраты на создание вакуума. Преимуществами их являются сокращение затрат пара на подогрев воды и возможность деаэрации при температуре воды 313 - 343 К.  

Вакуумные деаэраторы имеют ограниченное распространение. Их существенным недостатком является возможность присоса воздуха, что затрудняет достижение хорошей дегазации. Для удаления воздуха при вакуумной деаэрации необходима установка эжектора или присоединение воздухопровода к конденсатору.  

Вакуумные деаэраторы в системах горячего водоснабжения работают по так называемому принципу перегретой воды, без подвода пара. Температура воды, поступающей в деаэратор, оказывается выше температуры кипения, соответствующей давлению в деаэраторе.  

Вакуумные деаэраторы включаются в работу так, как это указано в гл. Эффективность работы их оценивается по глубине удаления из обрабатываемой воды как кислорода, так и углекислоты. Для более полного удаления последней необходимо увеличивать количество пара, подаваемого на барботаж.  

Оформить заказ

Заказать НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Деаэраторы вакуумные серии ДВ предназначены для удаления коррозионно-агрессивных газов (кислорода и свободной углекислоты) из питательной воды водогрейных котлов и подпиточной воды систем теплоснабжения в котельных и на ТЭЦ. В качестве теплоносителя в них может использоваться перегретая деаэрированная вода и пар. Деаэраторы изготавливаются в соответствии с требованиями ГОСТа 16860 - 88.

Основные технические характеристики деаэратора вакуумного ДВ-50 приведены в таблице.

Цена
265 000 руб.

Технические характеристики моделей Деаэратор ДВ-50
Производительность номинальная, т/ч 50
Давление рабочее абсолютное, МПа (кгс/см²) 0,0075-0,05 (0,075-0,5)
Давление исходной воды избыточное, МПа (кгс/см²) 0,2 (2,0)
Рабочая среда Вода, пар
Температура деаэрированной воды, °С 40-80
Температура теплоносителя, °С 70-180
Пробное гидравлическое давление, абс., МПа (кгс/см²) 0,3 (3,0)
Максимальное давление при работе защитного устройства, абс., МПа (кгс/см²) 0,17 (1,7)
Нагрев воды при номинальной произв-ти мин/макс, °С 15/25
Тип охладителя выпара ОВВ-8
Тип эжектора (Рвс 0,02 МПа) ЭВ-60
Тип эжектора (Рвс 0,006 МПа) ЭВ-60
Масса сухая, кг 1020

ОПИСАНИЕ ИЗДЕЛИЯ

УСТРОЙСТВО, ПРИНЦИП РАБОТЫ

Деаэрационная установка состоит из деаэратора вакуумного ДВ, охладителя выпара ОВВ, эжектора водоструйного ЭВ.

В деаэраторе применена двухступенчатая схема деаэрации воды: 1-ая ступень - струйная, 2-ая – барботажная, в качестве которой используется непровальная перфорированная тарелка. Вода, направляемая на дегазацию по тру­бе попадает на верхнюю тарелку. После­дняя секционирована с таким расчетом, что при минимальной (25%) нагрузке работает только часть отверстий во внутреннем сек­торе. При увеличении нагрузки включаются в работу дополнительные ряды отверстий. Секционирование верхней тарелки исключа­ет гидравлические перекосы по пару и воде при изменениях нагрузки и всегда обеспечивает обработку паром струй воды. Пройдя струйную часть, вода попадает на пе­репускную тарелку, предназначенную для сбора и перераспределения воды на начальный учас­ток, расположенный ниже барботажной та­релки. Перепускная тарелка имеет отвер­стие в виде сектора, который с одной стороны примыкает к вертикальной сплош­ной перегородке, идущей вниз до основа­ния корпуса колонки. Вода с перепускной та­релки направляется на непровальную барботажную тарелку, выполненную в виде кольца с рядами отверстий, ориентиро­ванными перпендикулярно потоку воды. К барботажной тарелке примыкает водо­сливной порог, который проходит до ниж­него основания деаэратора. Вода протекает по барботажному листу, переливается через по­рог и попадает в сектор, образуемый порогом и перегородкой, а затем отводится из деа­эратора через трубу. Весь пар подводится под барботажную тарелку по трубе. Под тарелкой устанавливается паровая подуш­ка, и пар, проходя через отверстия, барботирует воду. С увеличением нагрузки, а сле­довательно, и расхода пара, высота паровой подушки увеличивается и избыточный пар пе­репускается в обвод барботажного листа че­рез отверстия в перепускных трубах. Затем пар проходит через горловину в перепускной тарелке и поступает в струйный отсек, где большая часть конденсируется. Парогазовая смесь отсасывается по трубе в охладитель выпара.

При использовании в качестве греющей среды перегретой воды последняя также по­дается под барботажную тарелку по трубе. Попадая в область с давлением ниже ат­мосферного, вода вскипает, образуя под лис­том паровую подушку. Вода, оставшаяся пос­ле вскипания, по водоперепускной трубе поступает на барботажную тарелку, где про­ходит обработку совместно с исходным пото­ком воды. Дальнейший путь пара, выделив­шегося из перегретой воды, не отличается от описанного выше.

Вакуумная деаэрационная колонка ДВ-50 имеет цельносварную конструкцию. Для возможности её разъема предусматрива­ется монтажный стык, расположенный выше перепускной тарелки.

ООО «Волгопромэнерго» изготавливает вакуумные деаэраторы типа ДВ производительностью 5, 15, 25, т/ч. Они предназначены для дегазации добавочной воды энергетических котлов и подпиточной воды систем теплоснабжения на ТЭЦ и в котельных, главным образом, водогрейных.

Основная техническая характеристика вакуумных деаэраторов

На рис.1 представлена конструктивная схема струйно-баботажного вертикального вакуумного деаэратора производительностью 5-25 т/ч.

Вода, направляемая на дегазацию по трубе 1, попадает на верхнюю тарелку 6. Последняя секционирована с таким расчетом, что при минимальной (30%) нагрузке работает только часть отверстий во внутреннем секторе. При увеличении нагрузки включается в работу дополнительные ряды отверстий. Секционирование верхней тарелки исключает гидравлические перекосы по пару и воде при изменениях нагрузки и во всех случаях обеспечивает обработку струй воды паром. Пройдя струйную часть, вода попадает на перепускную тарелку 5, предназначенную для сбора и перепуска воды на начальный участок, расположенный ниже барботажной тарелки 3. Перепускная тарелка 5 имеет отверстие в виде сектора, который с одной стороны примыкает к вертикальной сплошной перегородке 8, идущей вниз до основания корпуса колонки. Вода с перепускной тарелки 5 направляется на непровальную барботажную тарелку 3, выполненную в виде кольца с рядами отверстий, ориентированными перпендикулярно потоку воды.

К барботажной тарелке примыкает водосливной порог 9, который проходит до нижнего основания деаэратора. Вода протекает по барботажному листу, переливается через порог и попадает в сектор, образуемый порогом 9 и перегородкой 8, а затем отводится из деаэратора через трубу 11. Весь пар подводится под барботажную тарелку по трубе 2. Под тарелкой 3 устанавливается паровая подушка, и пар, проходя через отверстия, барботирует воду. С увеличением нагрузки, а следовательно, и расхода пара, высота паровой подушки увеличивается и избыточный пар перепускается в обвод барботажного листа через отверстия в перепускных трубах 4. Затем пар проходит черезгорловину в перепускной тарелке 5 и поступает в струйный отсек, где большая часть конденсируется. Парогазовая смесь отсасывается по трубе 7.

Рис 1. Принципиальная схема двухступенчатого вертикального вакуумного деаэратора.

При использовании в качестве греющей среды перегретой воды последняя также подается под барботажную тарелку по трубе 2. Попадая в область с давлением ниже атмосферного, вода вскипает, образуя под листом паровую подушку. Вода, оставшаяся после вскипания, по водоперепускной трубе 10 поступает на барботажную тарелку, где проходит обработку совместно с исходным потоком воды. Дальнейший путь паравыделившегося из перегретой воды, не отличается от описанной выше.

Вся колонка изготавливается цельносварной. Для возможности ее разъема предусматривается монтажный стык, расположенный выше перепускной тарелки. В табл.3 приведены основные конструктивные характеристики вакуумных деаэраторов ДВ-5 - ДВ-25.

Вертикальные выпара поверхностного типа.

Таблица 3. Основные конструктивные характеристики вакуумных деаэраторов

Наименование параметров Тип вакуумного деаэратора
ДВ-5 ДВ-15 ДВ-25
Номинальная производительность, т/ч
Высота, мм
Диаметр корпуса деаэратора, наружный, мм
Диаметр трубы, наружный, мм:
водоподводящей
отводящей
отсоса смеси
перепускных
подвода теплоносителя
Масса, кг
Емкость, м³
5
2400
616

57
76
159
57
57
471
0,67

15
2400
716

76
89
159
76
89
561
0,90

25
2400
816

89
108
159
76
108
666
1,2

На рис.2 приведена схема компоновки вертикального вакуумного деаэратора с охладителем выпара поверхностного типа. Часть потока исходной воды пропускается через охладитель выпара. Для обеспечения необходимого расхода выпара при всех нагрузках деаэратора расход воды на охладитель выпара должен соответствовать номинальной производительности и поддерживаться постоянным. Конденсат из охладителя выпара рекомендуется отводить отдельным трубопроводом через гидрозатвор в дренаж или на верхнюю тарелку деаэратора. С этой целью охладитель наклонен в сторону отвода конденсата (уклон 1:10).

Рис.2. Схема компоновки вертикального вакуумного деаэратора с охладителем с выпара поверхностного типа:
1 - вакуумный деаэратор; 2 - охладитель выпара; 3 - подвод греющей среды; 4 - подвод исходной воды; 5 - отвод деаэрированной воды; 6 - отвод конденсата: 7 - отвод газов

Вакуумные деаэраторы следует защищать от переполнения и от опасного повышения давления. Наиболее просто вопрос защиты решается при сливе деаэрированной воды самотеком в промежуточные (или аккумуляторные) баки атмосферного давления при обязательном отсутствии запорной и регулирующей арматуры на сливных трубопроводах. В этом случае защита осуществляется через переливные гидрозатворы баков, рассчитанные на пропуск максимального расхода воды, поступающей в деаэратор при аварийных ситуациях. В остальных случаях защита должна выполняться с помощью гидрозатвора, присоединяемого к сливному трубопроводу или промежуточному коллектору. Высота гидрозатвора выбирается в зависимости от места его присоединения к системе. При подводе к деаэратору в качестве греющей среды пара необходимо также устанавливать предохранительный гидрозатвор на паропроводе между деаэратором и регулятором давления.

Комплектация вакуумных деаэраторов вспомогательным оборудованием (в количестве по 1 шт.) приведена в табл.4.

Таблица 4. Комплектация вакуумных деаэраторов вспомогательным оборудованием

Деаэратор Охладитель
выпара
Эжектор
водоструйный
Клапан регулирующий
на подводе
теплоносителя
Клапан регулирующий
на подводе
исходной воды
ДВ-5А ОВВ-2 ЭВ-10 (р вс =0,02 МПа)
ЭВ-30 (р вс =0,006 МПа)
6с-9-1
Ду=80мм
р у =10,0 МПа
9с-3-3
Ду=50мм
р у =6,4 МПа
ДВ-15 то же то же то же
ДВ-25 ЭВ-30 (р вс =0,02 МПа)
ЭВ-60 (р вс =0,006 МПа)
Т-34б
Ду=80мм
р у =6,4МПа

Общий вид вакуумных деаэраторов ДВ-5, ДВ-15, ДВ-25 приведен на рис. 3. Основные размеры вакуумных деаэраторов этих типоразмеров даны в табл.5, экспликация штуцеров - в табл.6, а компоновка этих вакуумных деаэраторов с охладителями выпара - на рис.4.

Основные размеры установок с вакуумными деаэраторами ДВ-5, ДВ-15, ДВ-25 и соответствующими охладителями выпара приведены в табл.7, а экспликация штуцеров этих установок - в табл.8.

Техническая характеристика вакуумных деаэраторов ДВ-5,ДВ-15, ДВ-25

Рис.3 Общий вид вакуумных деаэраторов ДВ-5, ДВ-15, ДВ-25


Рис. 4 Компоновка вакуумных деаэраторов ДВ-5, ДВ-15, ДВ-25

Таблица 5. Основные размеры вакуумных деаэраторов ДВ-5, ДВ-15, ДВ-25

Типоразмер деаэраторов Производи-тельность, т/ч L L 1 I D xδ D 1 H Масса, кг
ДВ-5 5 786 836 200 600х8 24 2800 471
ДВ-15 15 886 936 250 700х8 24 2800 561
ДВ-25 25 1000 1296 275 800х8 28 2800 666

Таблица 6. Экспликация штуцеров ДВ-5, ДВ-15, ДВ-25

Таблица 7. Основные размеры, мм, установок с вакуумными деаэраторами ДВ-5, ДВ-15, ДВ-25

Типоразмер L L ! L 2 L 3 I I 1 I 2 I 3
деаэратора Охладителя выпара
ДB-5 ОВВ-2 1469 796 786 1020 698 570 180 90
ДВ-15 ОВВ-2 1519 896 886 1020 698 570 180 90
ДВ-25 ОВВ-2 1576 906 1000 1020 698 570 180 90
Типоразмер D 1xδ Н Н 1 Н 2 h р 1 Масса, кг
деаэраора Охладителя выпара
ДB-5 ОВВ-2 325х8 3398 2800 1260 100 240 638
ДВ-15 ОВВ-2 700х8 325х8 3398 2800 1260 100 240 728,3
ДВ-25 ОВВ-2 800х8 325х8 3398 2800 1260 100 240 833,3

Таблица 8. Экспликация штуцеров в установках с вакуумными деаэраторами ДВ-5, ДВ-15, ДВ-50

Индекс Назначение Диаметр штуцера наружный, мм
ДВ-5 ДВ-15 ДВ-25
Г Подвод перегретой воды (теплоносителя) 57 89 108
Д Подвод исходной воды 57 76 89
Е Отвод деаэрированной воды 76 89 108
Ж Отвод парогазовой смеси к эжектору 57 57 57
И Отвод конденсата 57 57 57
К Подвод охлаждающей воды 57 57 57
Л Отвод охлаждающей воды 57 57 57

В отопительно-производственных котельных вакуумные деаэраторы до последнего времени не применялись. Для термической деаэрации подпиточной воды тепловых сетей определенное распространение поручили одноступенчатые вакуумные деаэраторы струйного и пленочного типов, а также двухступенчатые деаэраторы струйно-барботажного типа.

Для деаэрации подпиточной воды котельных с водогрейными котлами институт Моспроект применил одноступенчатые вакуумные деаэраторы при давлении 0.2 кгс/см. На баке-аккумуляторе размещается струйная колонка атмосферного давления, серийно выпускавшаяся до 1968 г. Черновицким машиностроительным заводом. Умягченная вода, перегретая в предвключенных подогревателях выше температуры насыщения. соответствующей давлению в деаэраторе, через штуцер подается в открытую камеру. В эту же камеру подается рабочая вода после водоструйных эжекторов. В камере происходит вскипание перегретой воды и образование значительного количества парогазовой смеси. Затем вода переливается через водосливный порог, проходит каскадом через струйную колонку и сливается в бак-аккумулятор. При движении воды по высоте колонки происходит дополнительное удаление паровоздушной смеси, которая отводится через горловины тарелок, зазоры между корпусом аппарата и тарелками и удаляется из верхней части колонки по трубе. В баке-аккумуляторе размещен змеевик, в который подается сетевая вода. Вследствие этого в баке происходит частичное испарение воды, образовавшийся пар поступает навстречу струйному потоку воды, в колонку.

Противоточное движение потоков в деаэраторе является положительным элементом данной схемы. Однако незначительный расход пара, генерируемого в баке-аккумуляторе, не обеспечивает необходимой обработки воды.

К недостаткам данной конструкции вакуумного деаэратора относятся:

1. Отсутствие хорошей вентиляции струйной колонки.

2. Необходимость предварительного перегрева воды перед деаэратором на 6 - 8° С и конденсация под вакуумом значительного расхода выпара, что требует установки мощных охладителей выпара с большой поверхностью нагрева.

3. Расположение бака-аккумулятора под вакуумом, что вызывает его удорожание и увеличивает вероятность дополнительных присосов воздуха и вторичного заражения деаэрированной воды.

В 1968 г. Черновицкий машиностроительный завод прекратил производство высоких струйных колонок атмосферного давления и приступил к производству струйно-барботажных деаэраторов, содержащих укороченную струйную колонку с двумя дырчатыми тарелками. Использование укороченных струйных колонок, в которых время пребывания воды значительно сократилось, для вакуумных деаэраторов невозможно.

Более рациональным является использование обычных струйных колонок под вакуумом с противоточной схемой движения. В этом случае деаэрируемая вода поступает в колонку с температурой ниже температуры насыщения, соответствующей давлению в деаэраторе. Для подогрева и деаэрации воды в нижнюю часть колонки подводится пар, который движется навстречу потоку воды. Недостатками этих колонок являются их значительные габариты, большая потеря конденсата при деаэрации подпиточной воды и необходимость отвода из деаэратора большого расхода выпара, что требует установки мощных охладителей выпара.

В последние годы на тепловых электростанциях и в котельных с водогрейными котлами для деаэрации подпиточной воды тепловых сетей определенное распространение получили одноступенчатые вакуумные деаэраторы струйного типа, исключающие потерю конденсата.

Работа деаэратора осуществляется следующим образом. Основной поток деаэрируемой воды в количестве 90% от общего расхода исходной воды перегревается в предвключенных подогревателях и с температурой 75 - 80° С по центральной трубе подается в «горячую» колонку А. Давление в колонке поддерживается таким, чтобы температура насыщения была ниже температуры поступающей воды на 5 - 8° С. В результате этого деаэрируемая вода, поступая на первую тарелку, вскипает, выделяя определенное количество парогазовой смеси. Затем вода стекает вниз по тарелкам в струйном потоке, а параллельно ей сверху вниз движется паровоздушная смесь. В нижней части колонки А и Б соединены трубопроводом, через верхнюю часть которого паровоздушная смесь из колонки А поступает в колонку Б. В эту колонку на верхнюю тарелку по трубе поступает холодная вода с температурой 15 - 20° С в количестве 10% от производительности деаэратора. Холодный поток воды стекает сверху вниз по ряду дырчатых тарелок, а навстречу ему снизу вверх движется паровоздушная смесь. Пар при этом конденсируется, а неконденсирующиеся газы удаляются из колонки отсасывающим устройством через патрубок. Вода из «холодной» колонки Б по нижней части трубопровода отводится в колонку А, откуда с основным потоком воды через патрубок - в бак-аккумулятор. Таким образом, «холодная» колонка является смешивающим охладителем выпара.

Наряду с описанной конструкцией разработаны деаэраторы, в которых «холодная» колонка размещается в центре «горячей» колонки и объединена с ней общим верхним днищем.
Основным недостатком приведенных конструкций вакуумных деаэраторов является прямоточное движение пара и воды в «горячей» колонке, что приводит к резкому снижению интенсивности процесса дегазации по сравнению с противоточной схемой движения потоков. В этих условиях для повышения эффекта дегазации приходится увеличивать число тарелок и высоту аппарата, которая достигает 5,5 м. Одновременно возрастает металлоемкость деаэрационной колонки. Описанные вакуумные колонки серийно промышленностью не выпускаются.

Для обеспечения глубокой дегазации питательной и подпиточной воды ЦКТИ разработаны двухступенчатые вакуумные деаэраторы. Вода, направляемая на дегазацию, по трубе попадает на верхнюю тарелку. Последняя секционирована с таким расчетом, что при минимальной (30%) нагрузке работает только часть отверстий во внутреннем секторе. При увеличении нагрузки включаются в работу дополнительные ряды отверстий. Секционирование верхней тарелки позволяет избежать гидравлических перекосов по пару и воде при колебаниях нагрузки и но всех случаях обеспечить обработку струй паром. Пройдя струйную чисть, вода попадает на перепускную тарелку. Последняя предназначена для сбора и перепуска воды на определенный участок расположенного ниже барботажного листа. Перепускная тарелка имеет отверстие в виде сектора, который с одной стороны примыкает к вертикальной сплошной перегородке, идущей вниз до основания корпуса колонки. Вода с перепускной тарелки направляется на непровальный барботажный лист, выполненный в виде кольца со щелями или отверстиями, ориентированными перпендикулярно потоку воды. В конце барботажного листа имеется водосливный порог, который проходит до нижнего основания деаэратора. Вода протекает по барботажному листу, переливается через порог и попадает в сектор, образуемый порогом и перегородкой, а затем самотеком отводится в трубу. Весь пар в колонку подводится под барботажный лист по трубе. Под листом устанавливается паровая подушка, и пар, проходя через щели, барботирует воду. С увеличением нагрузки, а следовательно, и расхода пара паровая подушка увеличивается и избыточный пар перепускается в обвод барботажного листа через отверстия в трубах. Затем пар проходит через горловину в перепускной тарелке и поступает в струйный отсек, где большая часть пара конденсируется. Паровоздушная смесь отсасывается по трубе. Подвод химически умягченной воды после охладителя выпара осуществляется через коллектор на верхнюю тарелку. При необходимости подачи в деаэратор конденсата его следует вводить через штуцер на перепускную тарелку.

При отсутствии пара и подводе к деаэратору в качестве греющей среды перегретой воды последняя также подводится под барботажный лист по трубе. Попадая в область давления ниже атмосферного, вода вскипает, образуя под листом паровую подушку. Вода, оставшаяся после вскипания, по трубе удаляется на начальный участок барботажного листа, где проходит обработку совместно с исходным потоком воды. Дальнейший путь пара, выделившегося из перегретой воды, не отличается от описанного выше.

Вся колонка изготавливается цельносварной. Для ее разъема предусмотрен монтажный стык, расположенный выше перепускной тарелки. В настоящее время Черновицким машиностроительным заводом разработаны конструкции описанных вакуумных деаэраторов производительностью 25, 50, 75, 100, 150, 200 и 300 т/ч, а ЦКТИ испытаны головные образцы.

Производство этих деаэраторов в комплекте с воздухоотсасывающими устройствами и охладителями выпара намечено с 1972 г. на Саратовском заводе тяжелого машиностроения (СЗТМ).

В 1968 г. ЦКТИ совместно с СЗТМ разработал вакуумные струйно-барботажные деаэраторы горизонтального типа для подпиточной воды тепловых сетей производительностью 400, 800, 1200, 1600, 2000 и 3200 т/ч. Конструкция этих деаэраторов предусматривает возможность их использования также и для питательной воды ТЭЦ при замене деаэраторов атмосферного давления. В качестве барботажной ступени в этой конструкции также применены непровальные дырчатые тарелки.

Деаэратор вне зависимости от производительности представляет собой цилиндр диаметром 3 м, в котором размещены все элементы и охладитель выпара смешивающего типа. Химически умягченная вода поступает в деаэратор по трубе и попадает в распределительный коллектор, откуда стекает на первую тарелку. Эта тарелка служит для пропуска минимального расхода воды. С увеличением производительности деаэратора выше минимальной вода с первой тарелки перепускается коробами на третью тарелку. Вода с первой тарелки попадает на вторую тарелку, которая также рассчитана на минимальную нагрузку. Такая конструкция двух первых тарелок объясняется следующими соображениями. В этом деаэраторе отсутствует поверхностный охладитель выпара. Первые две тарелки должны обеспечить полную конденсацию необходимого количества выпара. Третья тарелка является основной тарелкой, обеспечивающей работу деаэратора при всех нагрузках. Для исключения перекосов но воде и пару при минимальной нагрузке работает часть отверстий третьей тарелки. С повышением производительности в работу включаются дополнительные ряды отверстий. С третьей тарелки вода попадает на перепускную тарелку, которая служит для сбора и перепуска воды на барботажный лист. После обработки на барботажном листе деаэрированная вода отводится по трубе. В деаэраторе выделен отсек, куда по трубе подается греющая среда - деаэрированная вода с температурой 70 - 150° С. При входе в отсек вода вскипает, а жалюзи способствуют разделению воды и пара.

Выделившийся пар поступает под барботажный лист, а оставшаяся вода по каналам вытесняется на уровень барботажного листа и вместе с деаэрированной исходной водой отводится из деаэратора. Пар, проходя через щели барботажного листа, подвергает воду интенсивной обработке. При этом под листом образуется паровая подушка. Когда паровая подушка превышает 200 мм, включаются в работу короба, по которым пар перепускается в струйный отсек между третьей и четвертой тарелками.

Пар, прошедший через барботажный лист, пересекает струйный поток, сливающийся с четвертой тарелки, и поступает в струйный отсек между третьей и четвертой тарелками. В этом отсеке происходит основной подогрев воды до температуры, близкой к температуре насыщения. Из третьего отсека пар поступает во второй отсек, где практически полностью конденсируется. В первом отсеке происходит охлаждение паровоздушной смеси и к эжектору поступают охлажденные неконденсирующиеся газы по трубе. При использовании описанной конструкции для деаэрации питательной воды рекомендуется в отсек подавать возврат конденсата с производства, а при его отсутствии - пар из расчета 20 - 25 кг на 1 т деаэрированной воды. Работа деаэратора при этом не отличается от работы вакуумного деаэратора подпиточной воды.