Первые железнодорожные мосты. Мосты на железных дорогах

Железнодорожный мост через реку Исеть (г. Каменск-Уральский)

Железнодорожный мост - искусственное сооружение, которое строится для укладки полотна через водные препятствия. На небольших водотоках и суходолах устраивают малые мосты, трубы или лотки. Разновидностями мостов являются путепроводы, виадуки и эстакады. В местах пересечения железных и автомобильных дорог или двух железнодорожных линии строят путепроводы. Для пересечения ущелий, глубоких долин и оврагов строят виадуки, для пересечения с городской территорией - эстакады. Эстакады также строят на подходе к большим мостам.

Конструкция моста

Мост состоит из пролётных строений, являющихся основанием для пути и опор, поддерживающих пролётные строения и передающих давление на грунт. Опоры состоят из фундамента и видимой части (тела). Фундаменты опор сооружаются при неглубоком залегании прочных грунтов на естественном основании, а при слабых грунтах - на сваях. Концевые опоры моста называются устоями, а промежуточные - быками. Устои служат подпорной стенкой, для примыкающего к мосту земляного полотна. Пролётные строения опираются на опоры через опорные части, которые позволяют пролётному строению поворачиваться и продольно перемещаться при изгибе под нагрузкой и при изменении температуры. Под одним концом пролётного строения помещают неподвижные опорные части, допускающие только поворот, под другим концом - подвижные, перемещающиеся на катках. Пролётное строение состоит из балок, ферм, связей между ними и мостового полотна.

Материалы пролётного строения

Деревянные мосты широко применялись в первый период строительства железных дорог, а также во время Великой Отечественной войны для быстрого восстановления разрушенных мостов. Достоинствами этих мостов являются простота конструкции, возможность использования местных материалов, дешевизна и быстрота сооружения. Однако они недолговечны, пожароопасны и сложны в содержании.

В XIX в. широкое распространение для строительства железнодорожных мостов получил камень. Каменные мосты долговечны, надёжны и требуют небольших затрат на содержание. Каменные мосты имеют значительную собственную массу, поэтому малочувствительны к увеличению массы поездов, меньше других мостов реагируют на удары при движении поездов, при езде по ним производится меньше шума. Недостатками каменных мостов является большая трудоёмкость строительства и ограниченная длина пролёта. В конце XIX - начале XX вв. каменные мосты уступили место бетонным, железобетонным и стальным мостам.

Металлические мосты получили широкое распространение благодаря высокой прочности при сравнительно малой массе, возможности применения типовых деталей, высокой механизации сборочных работ. Металлические мосты составляют около 70 % общей протяжённости железнодорожных мостов. Их недостатками являются большой расход металла и необходимость тщательного ухода для предотвращения коррозии.

Железобетонные мосты являются основным типом малых мостов. Они более долговечны, чем металлические и требуют меньших затрат на содержание. Железобетонные конструкции также применяются в средних и больших пролётах железнодорожных мостов, однако их большая масса усложняет строительно-монтажные работы и требует более мощных опор.

В сталежелезобетонных мостах железобетонная плита проезжей части или балластного корыта объединена со стальными главными и поперечными балками или фермами и включена в совместную работу с ними.

Мостовое полотно

На железнодорожных мостах применяются два вида мостового полотна: с ездой на балласте и безбалластное. Полотно с ездой на балласте применяется на железобетонных и сталежелезобетонных мостах. Балластная призма используется однослойная щебёночная или двухслойная из асбестового балласта поверх дренирующего щебёночного слоя. Балласт укладывается в балластное корыто, наименьшая толщина балласта под шпалой составляет 25 см, наибольшая толщина не должна превышать 60 см. Из-за большого собственного веса применение мостового полотна с ездой на балласте ограничено пролётами 33 м для железобетонных мостов и 55 м - для сталежелезобетонных.

Мостовое полотно безбалластного типа применяется преимущественно на металлических мостах. Для устройства мостового полотна используются деревянные, металлические или железобетонные поперечины (мостовые брусья), а также сплошные железобетонные плиты. Мостовые брусья укладываются на продольные (главные) балки на расстоянии 10-15 см друг от друга во избежание провала колёс между ними. Вертикальные прогибы пролётных строений могут достигать 1/800 расчётного пролёта. Для обеспечения плавности движения поездов рельсовому пути придают строительный подъём по дуге круга или параболе за счёт изменения высоты мостовых брусьев. Стрела подъёма должна примерно соответствовать величине прогиба от половины нормативной вертикальной нагрузки.

Охранные приспособления

Охранные приспособления предназначены для обеспечения безопасного прохода поезда в случае схода колёсной пары или тележки на мосту или на подходе к нему. Для этого внутри рельсовой колеи у каждого путевого рельса укладывается сплошная линия контррельсов или контруголков. Контррельсы ограничивают боковые смещения подвижного состава, сошедшего с рельсов, предотвращая его падение и опрокидывание. Контррельсы протягивают до задней грани устоев и далее их концы на протяжении не менее 10 м сводят «челноком», заканчивающимся металлическим башмаком. Челнок воспринимает удар от сошедшей колёсной пары и отклоняют её в желоб между рельсами и контррельсами. На мостах с безбалластным полотном из деревянных, металлических или железобетонных брусьев для предотвращения продольного смещения поперечин и провала колеса между ними снаружи путевых рельсов укладываются охранные (противоугонные) уголки иди брусья.

См. также

Литература

  • Железнодорожный путь / Т. Г. Яковлева, Н. И. Карпущенко, С. И. Клинов, Н. Н. Путря, М. П. Смирнов; под ред. Т. Г. Яковлевой. М.: Транспорт. 1999. 405 с.
  • Бройтман, Э. З. Железнодорожные станции и узлы [Текст] : учебник для студентов техникумов колледжей ж/д тр-та / Э. З. Бройтман. - М. : Маршрут, 2004. - 370 с.

Железнодорожное мостостроение в России возникло как составная часть отечественной мостостроительной школы, отличавшейся рационализмом в выборе и оценке конструкций, отказом от надуманных решений во имя внешней эффектности, стремлением к возможно более полному учету условий работы конструкций.

К началу строительства первых мостовых переходов на железных дорогах страны был накоплен богатый опыт сооружения мостов на обыкновенных дорогах, имелись уже проверенные на практике типы конструкций. Однако железнодорожные мосты во многом отличаются от мостов под обыкновенную дорогу. На железнодорожных мостах не требуется устраивать сплошную проезжую часть, их ширина меньше. С другой стороны, они несут существенно большую нагрузку, что не может не сказаться на их конструкции. Повышенные требования к железнодорожным мостам, а также отсутствие научных методов расчета, недостаточная изученность свойств строительных материалов, в том числе дерева, существенно осложняли проблему проектирования и строительства первых мостов под поездную нагрузку.

Самым крупным водным препятствием на первой железнодорожной линии Петербург-Царское Село явился Обводный канал в Петербурге . Через него в 1836 г. перекинули однопролетный деревянный арочный мост под два пути. Устои моста были каменные на свайном основании. Он прослужил свыше 30 лет и был заменен металлическим лишь в 1869 г.

Значительно более сложные проблемы возникли в процессе строительства железнодорожной магистрали Петербург-Москва . Здесь потребовалось устроить 19 путепроводов, 69 труб и 184 моста, в том числе через такие крупные реки, как Волга, Волхов, Тверца, Мcта. Руководил проектированием мостов Д. И. Журавский . Одной из особенностей мостовых переходов была значительная высота опор, что вызвало необходимость применять большие пролеты вместо малых во избежание удорожания стоимости строительства. Кроме того, часто поставленные опоры при небольших пролетах препятствовали судоходству и затрудняли пропуск льда.

Д. И. Журавский отказался от слепого копирования известных в то время большепролетных конструкций деревянных мостов. Справедливо полагая, что арочная система при большой высоте мостов потребует устройства массивных и дорогих опор, он остановил свое внимание на более легких балочных пролетных строениях с деревянными фермами, предложенных американским инженером Гау . Однако теории расчета таких конструкций не было, что вызывало серьезные сомнения в правильности подхода к назначению размеров сечений отдельных элементов.

В 1845 г. Д. И. Журавский создал теорию расчета решетчатых ферм, дав метод определения усилий в отдельных элементах. В частности, он нашел, что сечения вертикальных металлических тяжей назначались в фермах Гау необоснованно: тяжи у опор нагружены сильнее и должны быть более мощными. По конструктивным соображениям предусматривалось постоянное сечение поясов ферм по всей длине, в то время как в однопролетных конструкциях сечение поясов могло быть использовано полностью только в середине пролета. Для мостов больших пролетов ученый предложил балочную неразрезную систему, обеспечивающую рациональное использование материала поясов.

На основе проведенных исследований Д. И. Журавский дал рекомендации по расчету ферм Гау и разработал проекты деревянных мостов через все крупные водотоки на трассе железной дороги Петербург-Москва. Было разработано пять групп пролетных строений длиной от 16,4 до 60,8 м. Проектирование конструкций сопровождалось всесторонними исследованиями их работы под нагрузкой и свойств применяемых строительных материалов.

Пролетные строения всех мостов имели деревянные многорешетчатые неразрезные фермы, образуемые наложением друг на друга нескольких простых треугольных решеток, что существенно улучшало работу сжатых элементов.

Уникальным мостовым переходом явился Веребьинский виадук . По отзывам современников, этот виадук считался одним из лучших сооружений такого типа не только в России, но в Европе и Америке.

Мстинский мост имел девять пролетов по 61 м. Его опоры представляли собой пирамидальные башенные деревянные конструкции на каменном фундаменте, обшитые железом.

Балочный неразрезной двухпутный мост через Лугу у ст. Преображенская явился первым целиком железным мостом в России. Он сооружен в 1853-1857 гг. под руководством инженеров И. И. Стебницкого и И. Ф. Рер-берга. Каждый путь уложен на пролетное строение длиной 55,3 м. Опоры моста каменные, под два пути.

Принципиально новой по тому времени была конструкция пролетных строений. Главная особенность заключалась в том, что сжатые раскосы, в отличие от растянутых, сделанных из полосового железа, имели дополнительные приклепанные уголки, что увеличивало их жесткость и существенно улучшало работу на сжатие. Настил проезжей части, устроенной по верхним поясам ферм, сделали сплошным, что предохраняло фермы от попадания на них атмосферных осадков, отводимых с проезжей части при помощи специальных трубок. Коробчатые нижние пояса закрывались крышками из листового железа.

Совершенная конструкция моста обеспечила его надежную работу до 1941 г., когда он был разрушен во время боевых действий.

Железнодорожный мост - искусственное сооружение, по которому ж. д. пересекает препятствие (реку, пролив, ущелье, овраг) или другую дорогу. При пересечении ж.-д. путей с другой дорогой строят путепроводы и эстакады, над оврагами и ущельями прокладывают виадуки. В населенных пунктах мосты строят на линиях трамваев и на наземных линиях метрополитенов - метромосты. Мосты возводят на линиях магистральных железных дорог (в том числе на дорогах высокоскоростного наземного транспорта), а также на узкоколейных дорогах (гл. обр. на подъездных путях предприятий). По экономическим соображениям крупные мосты чаще всего сооружают под ж.-д. и автомобильное движения (совмещенные мосты). К разновидностям ж.-д. мостов относятся наплавные мосты, мостовое полотно которых уложено на плавучие опоры, металлические понтоны или деревянные плашкоуты, и сборно-разборные мосты, обеспечивающие быстрое налаживание ж.-д. переправы через водные препятствия. В ряде случаев по условиям судоходства строят разводные ж.-д. мосты для пропуска судов с перерывом движения поездов. Возвышение остальных ж.-д. мостов над расчетным судоходным горизонтом регламентирует подмостовой габарит. Мосты сооружают под один, два или несколько ж.-д. путей, расстояние между которыми по условиям габарита подвижного состава составляет не менее 4,1 м. Ж.-д. путь может располагаться выше или ниже основных несущих конструкций (с ездой поверху или понизу) либо проходить посередине: на одной части длины поверху, на другой - понизу.
К основным элементам ж.-д. моста относятся: пролетные строения с мостовым полотном под ж.-д. путь, мостовые опоры и опорные части. В зависимости от принятой статической схемы пролетных строений (рис. 3.61) мосты бывают арочные (в том числе арочно-консольные), балочные (с разрезными, неразрезными, консольными балками), рамные, вантовые, висячие, а также комбинированные, в которых сочетаются элементы нескольких систем. Применение консольных систем в ж.-д. мостах ограничено из-за сложности обеспечения плавности хода подвижного состава в местах расположения шарнирных соединений.


При строительстве мостов используют различные материалы: дерево, камень, бетон, железобетон, металлические материалы (сталь, чугун, алюминий) или их сочетания. Название моста определяется материалом пролетных строений. Например, металлический мост имеет пролетные строения из металла, в то время как его опоры могут быть железобетонными.
В отличие от пешеходных и автодорожных мостов, ж.-д. мосты испытывают более высокие нагрузки, в том числе динамические и ударные, поэтому поперечные сечения элементов их пролетных строений и опор должны быть более мощными. Линейные размеры и сечения определяются также нормами на прогибы пролетных строений от временных подвижных нагрузок, которые также более жесткие, чем для автодорожных мостов.
Пролетное строение перекрывает пролет между опорами моста и предназначено для движения транспорта. Оно воспринимает постоянные и временные нагрузки от транспортных средств, ветра, сейсмических и других воздействий и передает их на опоры. Основные элементы пролетных строений: проезжая часть, главные несущие конструкции (в том числе балки, фермы, арки, своды, рамы, кабели, цепи, пилоны), продольные и поперечные связи, объединяющие главные несущие конструкции в пространственно жесткую и геометрически не изменяемую систему. К элементам пролетных строений относятся также портальные рамы (в фермах с ездой понизу) и надарочное строение (в арках с ездой поверху). Проезжая часть ж.-д. моста состоит из мостового полотна и балочной клетки (рис. 3.62,я). Балочная клетка (ростверк), представляющая собой систему продольных и поперечных балок, передает нагрузку на главные балки или узлы главных ферм. Мостовое полотно (рис. 3.62,6) включает: рельсы, рельсовые скрепления, балластное корыто или плиту, балласт; деревянные или металлические поперечины; охранные и противоугонные средства; боковые тротуары, настил, перила; систему водоотвода, деформационные швы и др. Путь на пролетных строениях моста обычно укладывается на щебеночном балласте или на деревянных поперечинах, а на пролетных строениях особо крупных металлических мостов - также на металлических поперечинах. Допускается укладка пути с непосредственным креплением к железобетонной плите. Для передачи давления с пролетного строения на мостовые опоры служат опорные части, которые также допускают поворот пролетного строения и его горизонтальные перемещения (подвижные опорные части).

Мостовые опоры передают постоянные и временные нагрузки от пролетного строения грунтовому основанию через фундамент. Они должны обладать достаточной прочностью и устойчивостью, а их осадка, крен или сдвиг не должны превышать допустимых размеров, обеспечивая нормальную эксплуатацию моста. По расположению различают промежуточные опоры (быки) и концевые или береговые (устои моста). Основными элементами мостовых опор являются подферменная плита, тело опоры и фундамент (рис. 3.63). Подферменная плита (оголовок у быка) изготовляется монолитной или сборной из бетона или армированного железобетона. Тело опоры также может быть выполнено из бетона или армированного железобетона. В мостах, не подвергающихся воздействию воды, а также льда (путепроводы, эстакады), в конструкции опор могут быть применены металлические стойки. Фундаменты мостовых опор сооружают мелкого и глубокого заложения в зависимости от местных условий, грунтов и предполагаемой интенсивности движения. Опоры мостов, помимо вертикальных нагрузок от самих пролетных строений и движущегося по мосту подвижного состава, воспринимают также горизонтальные нагрузки - от ветра, льда, навала судов, торможения или силы тяги и т. д.

В ж.-д. мостах обычно используются балочные несущие конструкции (балки или балочные фермы), передающие на опоры гл. обр. вертикальные нагрузки, и (реже) -арочные (арки, своды), работающие, как правило, на сжатие и изгиб. Различают пролетные строения со сплошными и сквозными несущими конструкциями. Для перекрытия судоходных пролетов в ж.-д. мостах широко применяют стальные балочные сквозные фермы (рис. 3 64). Такие фермы состоят из поясов, вертикальных элементов - подвесок или стоек, наклонных элементов - раскосов. Элементы главных ферм изготовляют обычно на заводах из листового и профильного металла; при монтаже их соединяют сваркой или высокопрочными болтами, которые передают усилия в соединениях через трение.

Арочные несущие конструкции выполняют железобетонными или стальными. Арки, как правило, испытывают действие изгиба со сжатием. Концы арок (пяты) могут заделываться в опорах или шарнирно соединяться с ними. Арочные системы экономичнее балочных, но требуют более развитой конструкции опор для восприятия распора; их применение целесообразно в тех случаях, когда основание опор находится на твердых, малосжимаемых грунтах.
Комбинированные системы представляют собой сочетание различных статических схем, например балка, усиленная аркой (т. н. арка с затяжкой). Основными элементами такой арки являются затяжка, подвески и сама арка. Затяжка воспринимает распор от арки, работает на растяжение, арка - на сжатие и изгиб, подвески на растяжение. В такой комбинированной системе опорные реакции возникают, как у балочного моста. Материалом для комбинированных систем могут служить сталь и железобетон. Комбинированные арочные системы бывают с ездой понизу.
В висячих системах основным несущим элементом являются цепи (или кабели), пилоны и балка жесткости. Висячие мосты могут быть отнесены к разряду комбинированных (балка, усиленная кабелем, закрепленным на пилонах). Такие мосты, как правило, выполняют из металла, который используют для всех элементов. Висячие мосты, преодолевающие большую водную преграду, иногда делают совмещенными (под автомобильное и ж.-д. движения) с целью экономии материалов на основные элементы (опоры и фундаменты). Одним из самых красивых висячих мостов является мост через пролив Золотые Ворота в Сан-Франциско с главным пролетом в 1298 м. Кабели, как правило, заделываются в устоях, поэтому последние имеют достаточно мощную конструкцию.
Байтовые мосты также относят к комбинированным системам, так как они состоят из балки, усиленной вантами, закрепленными на пилоне. Балки жесткости изготовляют как из металла, так и из железобетона. Из этих же материалов делают пилоны; ванты обычно выполняют из высокопрочных проволок, сплетенных вместе и образующих кабели. Балка жесткости и пилоны работают на сжатие и изгиб, гибкие ванты - только на растяжение. Ванты могут располагаться параллельно друг другу или в виде «пучка», расходящегося от вершины пилона. Байтовые мосты в основном строят под автомобильное движение, редко под железнодорожное. Двухпилонный вантовый мост через р. Сава в Белграде с главным пролетом в 250 м построен под ж.-д. движение, мост через р. Парана в Аргентине с пролетом в 330 м - под совмещенное движение автомобильного и ж.-д. транспорта.

С тех пор, как появился первый железнодорожный мост, все изменилось. Какие красивые жд мосты есть в мире? Мы составили список из 15 таких мест. Мы определили самый красивый железнодорожный мост, а также самый высокий железнодорожный мост. В нашем списке вы увидите самые красивые железнодорожные мосты по всему свету, в том числе железнодорожный висячий мост, который поражает воображение. Все железнодорожные мосты, фото которых вы видите – это не сюрреализм.


2. Мост в четыре раза шире реки, через которую он проходит, может по праву считаться лучшим в рейтинге необычные железнодорожные мосты и красивые железнодорожные мосты, которые стоит посмотреть. Этот мост проходит через реку Юрибей на севере России . И благодаря тому, что мост проходит не только через реку, но и по суше, когда наступает половодье, поезда проходят его без проблем.


3. В Ростове-на-Дону существует своеобразная разводная переправа из трех частей — Темерницкий мост .


4. Железная дорога в Швейцарии поражает и радует глаз одновременно.


5. В Чувашии в деревне Мокры расположен удивительно красивый железнодорожный виадук. Сам мост уже не действует.


6. Увидеть воочию обязательно захочется мосты, расположенные по всему миру, а не только в России. Знаменитый железнодорожный мост Форт-Бридж , пересекающий реку Форт в Шотландии , находится под защитой ЮНЕСКО. Это самый длинный и старый в мире действующий консольный мост. По нему поезда ездят с 1890 года. Круто, правда?


7. Наконец, мы рекомендуем посмотреть на еще одно инженерное чудо. Железнодорожный мост через Енисей . Строительство начато в 1895 году. 30 августа 1896 года мост заложен. Закрыт в 2007 году. Этот мост рекордсмен по стоимости строительства на то время – все обошлось в 3 млн руб. Эта модель моста удостоена почетных наград – Гран-При и золотой медали в области архитектуры.


8. Знаменитый подвесной железнодорожный мост в Риге известен тем, что был практически разрушен во время Первой мировой войны. Этот мост стал практически символом Риги, как Эйфелева башня стала символом Парижа.


Посмотрите-ка еще видео на Youtube с впечатляющими мостами мира, возможно вы после него составите список стран, которые обязательно стоит посетить в своей жизни 🙂

Делитесь впечатлениями о статье со своими друзьями, они будут поражены. И отправляйтесь обязательно посмотреть на них воочию! А перед те, как отправиться — прочитайте еще одну нашу статью про , которые вы просто обязаны увидеть своими глазами и прямо сейчас, ведь они просто восхитительны! 🙂

В России на мостах и подходах к ним обычно укладывается тот же тип рельсов, что и на перегонах. В настоящее время на мостах эксплуатируются преимущественно термоупрочненные рельсы типа Р65. Имеющиеся незакаленные рельсы Р65 и даже термоупрочненные рельсы Р50 в плановом порядке заменяются на термоупрочненные Р65. В зависимости от климатических и эксплуатационных условий на мостах и подходах к ним может укладываться бесстыковой путь с рельсовыми плетями, перекрывающими мост и подходы, путь с длинными сварными рельсами (длиной не более длины температурного пролета) и звеньевой путь с рельсами длиной 25 м. /1/

Укладка бесстыкового пути на мостах не менее эффективна, чем на земляном полотне. В результате ликвидации стыков уменьшаются динамические напряжения в элементах пролетных строений, снижается интенсивность расстройства их соединений и мостового полотна, а соответственно уменьшаются затраты на содержание как пути на мос­тах, так и самих мостов. Поэтому применение бесстыкового пути на мостах – важная задача. При укладке сварных рельсовых плетей бесстыкового пути и длинных рельсов на мостах должны учитываться особенности совместной работы пути и моста. Основной особенностью здесь является подвижность подрельсового основания, вызванная изменением длины пролетного строения при изменении температуры воздуха и проходе подвижного состава. Подвижность пролетного строения при интенсивном торможении может составлять от 20 до 30 % его температурных перемещений. В то же время сварные рельсовые плети, перекрывающие мост, могут оставаться неподвижными. При наличии связей "рельс-пролетное строение" в рельсовых плетях появляются дополнительные продольные усилия, передающиеся при непрерывной рельсовой нити бесстыкового пути не только на пролетные строения, но и на опорные части и на подходы к мосту. Поэтому до укладки бесстыкового пути мосты обследуют и, если необходимо, капитально ремонтируют.

Как на отечественных, так и на зарубежных железных дорогах, на мостах применяют два типа мостового полотна: балластное (с ездой на балласте) и безбалластное. Мостовое полотно с ездой на балласте (рис. 1) применяется с железобетонными пролетными строениями длиной преимущественно до 33 м и сталежелезобетонными - длиной более 33 м.

На мостах с железобетонными пролетными строениями длиной до 3,6 м с ездой на балласте рельсовые плети работают практически независимо от пролетного строения и не испытывают дополнительных воздействий, связанных с его деформациями. Такие мосты почти не имеют строительного подъема, а изменение температуры пролетного строения вследствие большой массы бетона происходит с 4-5-часовым отставанием от изменения температуры окружающего воздуха. Поэтому при изменениях температуры и проходе поезда продольные деформации (изменения длины) такого пролетного строения бывают невелики. Это позволяет устраивать на железобетонных мостах с про­летными строениями до 33 м и ездой на балласте бесстыковой путь такой же конструкции, как и на земляном полотне. Рекомендуется применять плети такой длины, чтобы они полностью перекрывали весь мост. Концы плетей следует располагать не ближе 50-100 м от шкафных стенок устоев моста.

Рисунок 1. Мостовое полотно с ездой на щебеночном балласте и железобетонных шпалах при балластном корыте, предусматривающем пропуск щебнеочистительных машин

На мостах с ездой на балласте, имеющих полную длину более 50 м, а также на путепроводах с ездой на балласте при полной их длине более 25 м для предупреждения большого поперечного смещения от оси моста подвижного состава в случае его схода требуется укладывать контруголки. На мостах с ездой на балласте путь укладывается на специальных мостовых железобетонных шпалах, к которым можно прикреплять контруголки. Контруголки крепятся к шпалам шурупами, вворачиваемыми в деревянные вкладыши. Контруголки сводятся концами, образуя челнок, острия которого должны быть не ближе 10 м от задней стенки устоя (рис. 2). При укладке на мостах железобетонных шпал в пределах "челноков" располагают шпалы с постепенным уменьшением расстояния между осями деревянных вкладышей (рис. 3).

Рисунок 2. Схемы расположения железобетонных и деревянных шпал при примыкании рельсовых плетей к мостам (а) и перекрытии мостов рельсовыми плетями (6): А - рельсовые плети; Б - железобетонные шпалы; В - деревянные шпалы

Рисунок 3. Схема укладки железобетонных шпал в пределах «челноков» (цифрами обозначены типы шпал от Ш1 до Ш21)

В качестве балласта на мостах и подходах к ним применяется щебень из твердых пород. На отдельных мостах и подходах к ним эксплуатируется путь на асбестовом балласте. Однако в последние годы в плановом порядке асбестовый балласт заменяется щебеночным. Ширина плеча балластной призмы на мостах и подходах к ним устраивается не менее 35 см. При этом она не зависит от класса линии, т. е. является фактором, обеспечивающим устойчивость бесстыкового пути. Толщина балластного слоя под шпалой устраива­ется не менее 25 см. На отдельных мостах из-за габаритов толщина балластного слоя может быть ограничена до 15 и даже 10 см. В таких случаях необходимо принимать все меры для уменьшения динамического воздействия подвижного состава на путь. Это достигается путем ликвидации рельсовых стыков в пределах моста и периодической шлифовкой рельсов.

На мостах старой постройки в процессе эксплуатации высота бал­ластной призмы увеличивалась в результате выправки пути в профиле, а также из-за отсутствия достаточно простых технологий по очистке щебня на мостах. Это приводит к значительному увеличению постоянной нагрузки на мост. Для ограничения ее высота балласта под шпалой не должна превышать типовую более чем на 30 см. При большей высоте ширина лотка становится недостаточной для обеспечения необходимого поперечного профиля призмы. Поэтому в новых проектах ширина лотка понизу составляет 4,9 м. В эксплуатируемых мостах старой постройки во избежание осыпания балласта с пролетного строения приходится наращивать борта лотков. На некоторых дорогах укладывают железобетонные уголки, горизонтальная полка которых размещается под балластом. Во всех случаях необходимо, чтобы нижняя постель шпалы была ниже борта, и дополнительная нагрузка от увеличения собственного веса пролетного строения не превосходила допускаемую.

Довольно часто устраивают мостовое полотно с металлическими ортотропными плитами с ребрами жесткости. Плита имеет одинаковую жесткость в продольном и поперечном направлениях и включается в работу верхнего пояса продольной балки, что упрощает и усиливает конструкцию моста и удешевляет его содержание. На плите укладывают обычное верхнее строения пути (щебень, шпалы и т.д.).Такое мостовое полотно сооружено на мосту через р. Маин во Франкфурте-на-Майне (Германия). Речной пролет этого моста - 168 м. Иногда вместо металлической применяют железобетонную плиту, работающую совместно с верхними поясами главных ферм пролетного строения. Плиты в этом случае, как правило, приклеиваются к балкам клеем на эпоксидной основе. Путь укладывается на щебне. Имеются и другие конструкции балластного мостового полотна. На железных дорогах России, кроме железобетонных мостов, мостовое полотно с ездой на балласте применяется преимущественно на сталежелезобетонных мостах, включающих металлические пролетные строения с установленными на них железобетонными балластными корытами. Балластное корыто на таких мостах работает совместно с верхними поясами продольных балок, на которых оно закрепляется. Однако и на этих мостах влияние продольных подвижек пролетных строений на рельсовые плети снижается за счет балласта. Содержание пути на мостах с ездой на балласте наиболее просто и экономично по сравнению с другими конструкциями мостового полотна и мало отличается от эксплуатации пути на земляном полотне. Тем не менее, на большей части металлических мостов применяется безбалластное мостовое по­лотно.

Безбалластное мостовое полотно может быть на деревянных и ме­таллических поперечинах или на железобетонных плитах.

Мостовое полотно на деревянных поперечинах (мостовых брусьях) устраивается согласно рис. 4. В качестве охранных приспособлений на мостах с деревянными и металлическими поперечинами применяются контруголки сечением 160x160x16 мм. На эксплуатируемых мостах впредь до переустройства или капитального ремонта допускаются контруголки меньшего сечения, но не менее 150x100x14 мм.

Мостовое полотно с металлическими поперечинами эксплуатируется преимущественно на мостах довоенной постройки.

Рисунок 4. Мостовое полотно на мостовых брусьях с костыльным креплением рельсов: слева - охранный уголок прикреплен лапчатым болтом; справа - охранный уголок прикреплен костылями

Примечание. В скобках даны минимально необходимые зазоры между рельсовыми подкладками, охранными уголками и шайбами лапчатых болтов на участках, оборудованных автоблокировкой.

В последние годы резко возросли объемы укладки мостового по­лотна с железобетонными плитами (рис. 5). Изготовление и укладка безбалластных железобетонных мостовых плит производятся по типовым проектам. Сопряжение железобетонных плит с балками пролетных строений может производиться с помощью прокладного слоя из цементно-песчаного раствора с деревянными прокладками, из антисептированных деревянных досок и резины, а также других конструкций.

В качестве охранных приспособлений на мостах с железобетонными плитами применяются контруголки сечением 160x160x16 мм. Охранные приспособления на мостах с безбалластным мостовым полотном (деревянные, металлические поперечины, железобетонные плиты) устанавливают при длине мостового полотна более 5 м или при расположении мостов в кривых радиусом менее 1000 м.

Как известно, одна из основных особенностей работы пути, в том числе и бесстыкового, на мостах заключается в подвижности подрельсового основания. Рельсовые плети бесстыкового пути, перекрывающие мост, не имеют возможности перемещаться вместе с основанием.

Поэтому при наличии связей «рельсовые плети – пролетное строение», вследствие продольных подвижек последнего как в плетях, так и в продольных балках пролетного строения, появляются дополнительные продольные силы. Ввиду того, что площадь поперечного сечения продольных балок, поясов ферм пролетного строения многократно превышает площадь сечения рельса, то наиболее опасными будут дополнительные продольные силы для рельсовых плетей. Дополнительные силы в рельсовой плети в сумме с поперечными силами от подвижного состава, а также от изменения температуры плети не должны вызывать перенапряжений рельсов в зоне моста и подходов. Это требование выполняется при условии непревышения расчетных напряжений над допустимыми.

При этом условии учитывается, что температура рельсов на мостах в летнее время может быть ниже на 8-10 °С температуры рельсов на подходах к ним, а также что в зимнее время продольные деформации пролетного строения, вызванные проходом поезда, противоположны по направлению температурным и уменьшают воздействие последних на плети.

Рисунок 5. Мостовое полотно на безбалластных железобетонных плитах:

1 – безбалластная ж.б. плита, 2 – контруголок, 3 – путевой рельс со скреплениями, 4 – главные балки, 5 – опорная деревянная прокладка, 6 – высокопрочная шпилька крепления плиты, 7 – цементно-песчаная подливка, 8 – овальное отверстие для шпильки и нагнетания раствора под плиту, 9 – шайбы

Для определения дополнительных сил в рельсовых плетях на мос­тах и подходах к ним, вызванных подвижками пролетного строения, необходимо знать длины пролетных строений, значения перемещений и распределение сил сопротивлений (г м) по длине мостового полотна. Точность определения дополнительных сил обуславливается выбором функции, характеризующей взаимосвязь сил сопротивлений и перемещений.

На участках с подвижками пролетного строения более 3 – 5 мм происходит фрикционное проскальзывание его относительно рельсовых плетей, и сопротивления уже не зависят от величины перемещений, т. е.
.

В известных зарубежных работах при определении дополнительных продольных сил в рельсовых плетях принимают
. Это упрощение при перемещениях пролетного строения, вызванных изменениями температуры на 15 °С, почти в 2 раза увеличивает расчетное значение силы по сравнению с ее фактической величиной. При увеличении перепада температуры разность между расчетными и фактическими значениями дополнительных сил уменьшается. Например, для пролетного строения длиной 55 м при перепаде температуры на 45 °С разность между расчетной и фактической величиной дополнительных продольных сил не превышает 7-10 %.

При сплошном закреплении плетей скреплениями КД, КБ на мостах с пролетными строениями длиной 45-55 м, их продольные деформации могут вызвать в рельсовых плетях дополнительные осевые напряжения порядка 50-75 МПа, которые в сумме с изгибными и температурными напряжениями могут превышать допускаемые значения по прочности рельсов. Эти дополнительные напряжения способствуют быстрому расстройству мостового полотна, опорных частей пути в зоне подходов, а в отдельных случаях и выбросу пути в зоне подходов. Поэтому закрепление рельсовых плетей в соответствии с требованиями к их закреплению на земляном полотне неприемлемы для безбалластных мостов.

Самый лучший вариант в плане взаимодействия плетей и пролетных строений - применение скреплений, которые не препятствуют перемещению продольных строений относительно плетей. Закрепле­ние рельсовых плетей без защемления подошвы рельсов на отечественных железных дорогах применяется на безбалластных мостах длиной 33 м и менее, а на зарубежных дорогах - на мостах длиной до 25-30 м. При таком закреплении плетей удлинение или укорочение пролетных строений не вызывает дополнительных сжимающих или растягивающих напряжений в плети, а величина зазора при изломе плети не превышает допускаемого значения. Закрепление плетей на мостах длиной до 33 м осуществляется при помощи костыльных или раздельных скреплений (КД, КБ) с неплотно забитыми костылями или клеммами с подрезанными лапками, что обеспечивает зазор между клеммой и верхом подошвы рельса (рис. 6) При длине мостов больше 33 м во избежание раскрытия большого зазора рельсовые плети закрепляются на ограниченном протяжении мостового полотна в зоне неподвижного конца пролетного строения (0,2-0,25 м). На этом участке рельсовые плети крепятся так же, как и на земляном полотне с нормативной затяжкой гаек клемных болтов. На остальном протяжении мостового полотна плети крепятся без защемления клеммами. При таком закреплении почти исключается появление в плетях дополнительных сил, вызванных подвижками пролетного стро­ения Внедрение такой схемы закрепления плетей позволило расширить полигоны применения бесстыкового пути на отечественных же­лезных дорогах на однопролетных мостах длиной до 55 м и многопролетных - до 66 м.

На целом ряде зарубежных железных дорог бесстыковой путь укладывается на мостах большей длины (табл. 4). Увеличение длин мостов, на которых можно укладывать бесстыко­вой путь, достигается за счет более благоприятных климатических условий, применения новых конструкций прикрепления мостовых брусьев к поясам продольных балок или ферм, исключающих влияние продольных перемещений пролетного строения на напряженное состояние плетей (рис. 7), специальных конструкций рельсовых скреплений. В частности, в Японии применяются скрепления (рис. 8), из которых «А» обеспечи­вает погонные сопротивления продольному сдвигу 100 Н/см, «В» - 50 Н/см, «С» - не оказывает сопротивления продольному сдвигу. Комбинацией этих скреплений достигаются требуемые погонные со­противления. Наряду с выполнением требований по прочности, устойчивости пути, величине зазора, образующегося в случае излома плети, на мостах необходимо соблюдать, чтобы горизонтальные силы, передаваемые рельсовыми плетями на мостовое полотно в момент разрыва плети зимой, не превышали значений расчетных тормозных сил, на которые рассчитываются опорные части и опоры мостов. На однопро­летных мостах свыше 55 м и многопролетных свыше 60 м закрепление плетей только в зоне неподвижных концов пролетных строений в климатических условиях железных дорог России не обеспечивает требование по зазору. На этих мостах укладывается либо звеньевой путь, либо рельсовые плети длиной не более длины температурного пролета моста (рис. 9). Для компенсации температурных удлинений рельсов, а также удлинений, вызванных проходом поезда, на мосту применяются уравнительные приборы (рис. 10).

Т а б л и ц а 4

На практике уравнительные приборы укладываются на мостах с длинами температурных пролетов 100 м и более. Рельсовые плети в пределах таких мостов укладываются типа Р65 с костыльными, раздельными скреплениями К-65 на мостах с деревянными мостовыми брусьями или КБ-65 на мостах с металлическими мостовыми брусьями и железобетонными плитами.

Рисунок 6. Прикрепление рельсовых плетей к мостовым брусьям креплениями КД с укороченными ножками клемм

Рисунок 7. Узел соединения мостового бруса (1) с продольной балкой (2), допускающий их взаимные перемещения

Рисунок 8. Скрепления, предназначенные для укладки на мостах без балласта

Для предупреждения угона пути в пределах моста сварные рельсовые плети закрепляются в зоне неподвижных концов пролетных строений.

Рисунок 9. Температурные пролеты мостов:

А – с разрезными пролетными строениями в однопролетных мостах или при расположении на промежуточной опоре одной подвижной и одной неподвижной опорных частей смежных пролетных строений; б – то же при расположении на промежуточной опоре двух подвижных опорных частей; в, г – с нарезными пролетными строениями при расположении неподвижной опорной части в середине и на конце пролетного строения; д – с консольными пролетными строениями; е – с арочными пролетными строениями; L i – температурный пролет; У р – место установки уравнительного прибора

Рисунок 10. Уравнительный прибор:

1 – передний стык рамного рельса; 2 – рамные рельсы; 3 – начало отгиба рамного рельса;

4 – остряки; 5 – лафеты; 6 – граница соседних температурных пролетов

На мостах с деревянными мостовыми брусьями и костыльными скреплениями рельсовые плети закрепляются винтовыми или, как исключение, пружинными противоугонами, устанавливаемыми в замок. Винтовые противоугоны устанавливаются у брусьев, прикрепленных к противоугонным уголкам, установленным на верхних поясах продольных балок. Количество винтовых и пружинных противоугонов определяется путем деления продольной силы на усилие, которое воспринимается винтовым (рис. 11) или пружинным противоугонами. На мостах с ездой по балласту, с металлическими поперечинами рельсовые плети у неподвижных концов пролетных строений на протяжении, определяемом расчетами, прикрепляются к основанию скреплениями КБ с нормативной затяжкой гаек клеммных болтов. Протяженность участков закрепления плетей в зоне неподвижного конца пролетного строения пружинными противо­угонами или скреплениями КБ с нормативной затяжкой гаек клемм­ных болтов определяется из условия:

,

где Т - продольная сила от временной нагрузки в момент торможения или разгона поезда; - погонные сопротивления продольному сдвигу рельсовой плети в пределах участка закрепления.

На остальном протяжении пролетного строения рельсовые плети крепятся без защемления подошвы рельса.

На безбалластных мостах с металлическими поперечинами железобетонными плитами и с ездой по балласту устанавливаются подрельсовые резиновые или резинокордовые амортизаторы. Для уменьшения коэффициента трения между подошвой рельса и амортизаторами в пределах участков, где плети крепятся без защемления подошвы рельса, устанавливаются металлические П-образные прокладки, изготавливаемые из листовой стали толщиной 0,5 - 2,0 мм (рис 12). В последние десятилетия на многих мостах России с температурными пролетами 100 м и более вместо дорогостоящих уравнительных приборов начали укладывать уравнительные рельсы. Компенсация изменения длины рельсовых плетей на мостах с уравнительными рельсами осуществляется за счет стыковых зазоров, а в необходимых случаях -за счет одного-двух сезонных уравнительных рельсов. Сезонные рельсы - это рельсы для зимних и летних условий. На зимний период это, как правило, рельсы стандартной длины 12,5 м, а на летний период - укороченные, длиной 12,46; 12,45 или 12,44 м. Укладка плетей с уравнительными рельсами выполняется по специально разработанному проекту, который обязательно должен включать схему укладки сварных рельсовых плетей и уравнительных рельсов; расчет зазоров в стыках и определение температурного интервала замены сезонных уравнительных рельсов; схему закрепления рельсо­вых плетей на мостовом полотне и подходах.

Рисунок 11. Винтовой противоугон

Рисунок 12. П-образная металлическая прокладка