Фотохимическое действие света на светочувствительное вещество. Образование скрытого изображения. Скрытое фотографическое изображение и механизм его образования

Для лучшего понимания фотоискусства, а так же видов фотосъемки и восприятия фотографии может быть очень полезна информация, изложенная в этой статье. Как уже говорилось, при действии света на галогенид серебра происходит реакция фотолиза, завершающаяся образованием частиц металлического серебра и газа в молекулярной форме. Это одна из широкого класса химических реакций под действием света, носящих общее название фотохимических. Следовательно к фотолизу применимы общие законы таких реакции, и один из них - закон квантовой эквивалентности Эйнштейна - нам сразу понадобится. Он гласит, что каждый поглощенный квант света в реакционной среде вызывает одну и только одну элементарную реакцию, иными словами, каждый поглощенный квант изменяет одну молекулу среды.

В нашем случае известно, что поглощение кванта вызывает фотоэффект, т.е. непосредственно приводит к появлению только одного свободного электрона в кристалле галогенида серебра за счет отрыва его от иона Hal–. Однако продуктом фотолиза являются не свободные электроны и возникшие вместе с ними положительные дырки, а атомы серебра и молекулы галогена. Значит, надо выяснить, во-первых, каким образом образовавшиеся электроны и дырки используются для образования металла и газа и, во-вторых, подчиняются ли закону Эйнштейна количества образовавшихся металла и газа, т. е. действительно ли один электрон и одна дырка участвуют только в одной элементарной реакции разделения молекулы галогенида серебра на ионы, а затем и на атомы. Обратим сразу же внимание на следующее. Если кристалл галогенида серебра подвергнуть воздействию света, поглощаемого им, достаточно интенсивного и в течение достаточно большого времени, кристалл можно довести до полного разложения. Впрочем, уже и раньше окраска кристалла начнет заметно изменяться, появится бурый оттенок, обусловленный выделением значительных количеств серебра. Однако при тех экспозициях, какие обычно приходятся на долю отдельного эмульсионного макрокристалла в реальных условиях фотосъемки, образуются в лучшем случае сотни атомов серебра, обычно же лишь десятки, а в высокочувствительных эмульсиях даже меньше чем по десятку в одном микрокристалле. Такие количества не только недоступны наблюдению глазом, но и не поддаются обнаружению с помощью лучших имеющихся электронных микроскопов. Тем не менее, возникновение этих немногих атомов не проходит бесследно для кристалла: при погружении в восстанавливающий раствор (проявитель) кристалл легко восстанавливается целиком до металла, тогда как кристалл, не содержащий этих атомов, либо не восстанавливается вовсе, либо восстанавливается столь медленно, что за обычное время проявления это чаще всего почти не обнаруживается. Таким образом, можно сказать, что атомы серебра образовавшиеся фотохимическим образом служат катализатором восстановления всего кристалла, и именно присутствием или отсутствием такого катализатора объясняется различие, которое проявитель делает между экспонированными и неэкспоннированными кристаллами в эмульсии. Частицы, образовавшиеся из небольшого числа атомов серебра, называют скрытым изображением, подчеркивая этим, что они составляют особое изображение, обнаруживающее себя не впрямую, а лишь своей способностью вызвать образование видимого изображения, предшествовать ему. Однако если экспонирование продолжать и после того, как образовалось скрытое изображение, постепенно возникнет почернение, заметное глазу и без проявления, хотя и слабое; его называют прямым почернением. Для практических целей такой способ получения изображения негоден, но он важен как одно из доказательств серебряной природы скрытого изображения: поскольку переход от скрытого изображения к прямому почернению идет постепенно и непрерывно, то, следовательно, оба они возникают за счет одних и тех же процессов с одними и теми же конечными продуктами. Впрочем, последнее утверждение требует некоторых оговорок. Правильно то, что реакция, ведущая к образованию скрытого изображения и прямого почернения, одна и та же. Правильно также, что конечные продукты в обоих случаях ведут себя одинаково по отношению к ряду химических реагентов, например окислителей (отбеливателей), и притом именно так, как должно вести себя серебро. Однако их химическое тождество прослеживается не во всем: так, кусок металлического серебра, даже малый, катализатором реакции восстановления не служит, а скрытое изображение служит. Причиной этого и некоторых других различии надо считать, что скрытое изображение, хотя и состоит из атомов серебра, металлом в общепринятом смысле не является. Для металла характерны кристаллическая решетка, металлическая проводимость (движение свободных электронов, принадлежащих не отдельному атому, а кристаллу в целом) и ряд других свойств, которыми скрытое изображение не обладает. Его относят к так называемым кластерам, т. е. малым группам атомов (не более нескольких сотен) , в которых каждый атом в целом и его электроны не до конца потеряли сваю индивидуальность и обладают известной независимостью поведения по отношению ко всем остальным атомам и электронам, причем индивидуальные отклонения от средних свойств коллектива тем больше, чем меньше кластер. Поэтому отрыв электрона от атома в кластере требуем энной затраты энергии, чем в металлической частице - это доказывается сравнением опытных данных а работе выхода фотоэффекта в кластере и в металле. Имеются и другие подтверждения кластерного характера скрытого изображения. Раньше мы имели случай отметить, что отложение серебра при освещении кристаллов галогенида серебра происходит неравномерно, почти исключительно в местах сильного нарушения решетки. Хотя непосредственно увидеть, где скрытое изображение отложилось, нельзя, но уже давно было замечено, что проявление (а оно требует присутствия катализатора, т. е. скрытого изображения) начинается всегда лишь в немногих точках микрокристаллов фотоэмульсии, причем число и расположение этих мест определяется условиями химического созревания. Как читатель помнит, во время созревания формируется определенный вид нарушений решетки (примесные включения) и поэтому можно думать, что именно эти предумышленные нарушения служат местами отложения скрытого изображения, а значит, и катализа проявления. Не будем описывать соответствующие опыты, потребовавшие утомительного счета мест проявления и сложной статистической обработки результатов счета; укажем лишь то, что из тих следует совершенно определенно: скрытое изображение отлагается не повсеместно, а преимущественно в местах нарушения; решетки, причем главнейшими из них являются как раз примесные включения. Значит, чтобы объяснить, как идет образование скрытого изображения, необходимо иметь объяснение и концентрирования фотохимически образовавшегося серебра в отдельных местах. Что касается галогена, он выделяется со всей поверхности кристалла, и нужно иметь объяснение, почему это не совершается только в отдельных точках поверхности. Заслуживает серьезного внимания и такой вопрос: если серебро отлагается на поверхности, а выделение галогена тоже идет отложение фотолитического серебра в отдельных точках крупного кристалла бромида серебра и фотолитического брома в виде сплошного темного облака, связанного желатином по всему диаметру микрокристалла. Снимок получен в электронном микро. скопе после предварительного усиления скрытого изображения до видимого слабым проявлением и растворения остального бромида серебра дозированным фиксированием; при этом осталась вся желатиновая обо почка микрокристалла, сохранившая его форму, и на ней удержаны малые частички проявленного серебра. Почему не происходит обратная реакция;между серебром и галогеном, ведущая к воссозданию галогенида серебра, т, е. «стиранию» продуктов прямой реакции. Здесь исключительно важным оказалось присутствие желатины: прямые опыты показали, что желатина в фотоэмульсии выполняет еще одну очень важную функцию - связывание (обычно говорят «акцептирование») фотолитического галогена, особенно брома, причем связанный галоген лишается подвижности и становится неспособным к реакции с фотолитическим серебром. Отметим, что в крупных монокристаллах галогенида серебра, поверхность которых ничем не защищена, роль обратной реакции оказывается значительной, чем еще больше снижается и без того низкая светочувствительность таких кристаллов.

Скрытое фотографическое изображение и механизм его образования

Итак, мы теперь знаем, что скрытое изображение представляет небольшую группу атомов серебра. Нам, кроме того, известны некоторые явления, характерные для галогенидов серебра в темноте и на свету: существование темной проводимости, обусловленной движением межузельных ионов, отсутствие подвижных ионов, возникновение при освещении свободных электронов и положительных дырок, из которых первые гораздо подвижнее вторых, существование в решетке кристалла галогенида серебра нарушении, наиболее значительные из которых имеют примесную природу, возникают в ходе химического созревания и оказывают наибольшее влияние на светочувствительность кристаллов, т. е. на их способность к образованию скрытого изображения. Надо теперь из этих разрозненных сведений построить общую картину. Впервые это сделали в 1938 г. английские физики Р. Гэртти и Н. Мотт (впоследствии лауреат Нобелевской премии), хотя в дальнейшем предложенная ими картина подверглась дополнению (за почти полвека это неизбежно) , а кое в чем претерпела и изменения, общие ее положения сохранились по сей день - редкий пример научного долголетия! Согласно Гэрни и Мотту, дело обстоит следующим образом. Каждый микрокристалл фотоэмульсии при освещении ведет себя независимо от других, и его последующая судьба - возникновение способности к появлению или ее отсутствие - не зависит от 1-ого, что случится с его соседями. Освещение вызывает в микро- кристалле галогенида серебра внутренний фотоэффект, т. е. появление свободных электронов, перемещающихся в пределах кристалла до тех пор, пока они не попадут в какие-либо потенциальные ямы, где задержатся на более или менее длительное время. За время их нахождения в яме (тем самым яма приобрела отрицательный заряд) к ним подходят находящиеся вблизи подвижные ионы А, которые влечет обычная сила притяжения разноименных зарядов. Результатом является возникновение группы атомов серебра. Поскольку в мелкой яме электроны могли бы и не задержаться надолго и уйти из нее еще до подхода ионов А, главную роль в образовании групп атомов играют наиболее глубокие ямы, из которых электроны почти не имеют шансов уйти, а как раз такими ямами, как мы помним, служат примесные частицы, возникшие при химическом созревании. В этой картине удалось найти место и для других давно известных экспериментальных фактов. Остановимся на двух из них. Во-первых, было доказано, что скрытые изображения, созданные действием света, поглощаемого самим галогенидом серебра (сине-фиолетового, а также ультрафиолетового), где действием света, поглощаемого красителем оптическим сенсибилизатором (зеленого, желтого, красного) совершенно одинаковы. Во-вторых, как уже говорилось, восстановление галогенида серебра до металл в проявителе не идет в отсутствие скрытого изображения. Оба факта в рамках теории Гэрни - Мотта вполне естественны. Действительно, если поглощение света красителем вызовет освобождение в нем электрона, передаваемого затем в галогенид серебра, или передачу в галогенид энергии возбуждения, полученного красителем и достаточной для освобождения электрона в самом галогениде, то все остальное будет происходить так, как если бы свет поглощался непосредственно в микрокристалле. Правда, и по сей день нет окончательного ответа на вопрос, что же делает краситель - передает ли электрон или энергию возбуждения, но возникновение в галогениде серебра свободных электронов после поглощения света красителем доказано прямыми опытами, а значит, ответ, вытекающий из теории Гэрни - Мотта, остается правильным независимо от детален картины. Нетрудно понять и второй из названных фактов. Восстановление с точки зрения химии есть передача электронов от восстановителя (который сам при этом окисляется) к восстанавливаемому веществу. Если проявляющее вещество, как и положено Восстановителю, передаст микрокристаллу галогенида серебра электроны, те начнут перемещаться по кристаллу, пока не закрепляется в какой-либо потенциальной яме и начнут притягивать к себе ионы А. Очевидно, наиболее прочным будет закрепление их в наиболее глубоких ямах, а такими, как мы знаем, будут места сосредоточения скрытого изображения. К этому добавим, что образование атома серебра в яме «углубляет» ее; иными слова-ми, процесс роста частицы серебра на яме путем поочередного добавления атомов есть в то же время процесс углубления ямы, Значит, со всеми электронами, переходящими от восстановителях будет происходить то же, что и с электронами, появившимися. вследствие фотоэффекта, и рост частицы серебра, начавшийся еще на стадии экспонирования, будет продолжаться на стадии проявления - подчеркиваем, именно продолжаться, а где начинаться. Не забудем и о судьбе положительных дырок, образующихся одновременно со свободны ми электронами. Гэрни и Мотт считали, что в образовании скрытого изображения дырки не играют никакой роли по следующим причинам: они малоподвижны, и когда электрон уже далек от места своего освобождения, дырка еще почти не сдвинулась оттуда, т. е. их воссоединение (рекомбинация, как говорят в физике) маловероятно, и процесс вспять не пойдет; дырка же, дошедшая наконец до поверхности кристалла, застает там уже не электроны, а готовые атомы, и хотя в химическом смысле дырка есть просто атом, реагировать с атомом ей трудно - мешает и малая подвижность, и присутствие сразу связывающей ее желатины. О том, насколько точны эти утверждения, у нас еще будет случай поговорить, но они по крайней мере не просто исключают дырки из участия в фотолизе, а дают этому определенные основания. Какие бы изменения и дополнения ни вносились позднее в теорию Гэрни - Мотта, одно осталось незыблемым -- существование двух стадий образования скрытого изображения, сначала электронной, затем ионного. Сейчас мы перейдем к изложению более детальных и более современных представлений, но в них чередование электронной и тонной стадий сохранится. Основные же изменения, каких теория Гэрни - Мотта потребовала уже вскоре после своего появления, вытекали из соображений о длительности двух стадий. Начнем по порядку. Гэрни и Мотт допускали, что все свободные электроны могут закрепиться в одной яме. Однако первый попавший туда электрон будет по закону Кулона отталкивать другие идущие к этой яме и электроны; прослои расчет показывает, что он не подпустит другие электроны к яме ближе, чем на 50 - 60 Л, т. е. на десяток постоянных решетки галогенида серебра, а это больше размера самой ямы. Значит, пока заряд первого закрепившегося в яме электрона не будет нейтрализован подошедшим ионом А, другой электрон к яме подойти не может и если даже он и окажется в яме, то не в этой же, а в другой; вместо возникновения и беспрепятственного роста группы атомов серебра в одном месте начнется в большей или меньшей мере распыление атомов, в том числе и одиночных, по многим местам. Чтобы довести эти изображения до сравнения с прямым опытом, прикинем, о каких временах идет речь. Точенный заряд е (электрона) создает на расстоянии 1 электрическое поле с напряженностью е/12 (здесь е диэлектрическая проницаемость среды). Раньше указанного времени следующий электрон не сумеет подойти к яме и принять участие в росте группы атомов серебра, т. е. скрытого изображения. Но это, возможно, и не потребуется: если, скажем, за все время экспонирования микрокристалл поглотит десяток-другой квантов, то в среднем время от возникновения одного свободного электрона до возникновения другого составит одну десятую или одну двадцатую всей выдержки. В обычных условиях выдержка редко бывает меньше 10-2 с, т. е. от появления одного электрона в яме до появления там другого в среднем пройдет больше времени, чем нужно для нейтрализации заряда первого электрона, и ничто не помешает росту группы атомов серебра в одном месте. Исключение составят случаи очень малых выдержек, интересные для теории и для ряда чисто технических задач, но почти невозможные в фотолюбительской практике; о них речь еще впереди. Слишком быстрый темп возникновения свободных электронов не является единственным препятствием для роста группы атомов. Препятствием, хотя и по иным причинам, оказывается также слишком медленный темп их возникновения, что случается при больших выдержках и низких освещенностях - ситуации не столь редкой в практике фотосъемки. Действительно, медленный темп означает, что промежутки времени, в течение которых первый образовавшийся атом остается в одиночестве, велики: так, при выдержке порядка секунды эти промежутки доходят до десятых долей секунды, а при выдержке порядка минуты - до нескольких секунд, что по атомным масштабам составляет огромное время. Предоставленный самому себе, не связываемый пика- ними взаимодействиями с другими атомами, поскольку их нет, чужеродный по отношению к решетке, где силы имеют электрическую природу и не воздействуют на электрически нейтральную частицу, такой атом имеет немалые шансы «распадаться» на исходные составные части электрон и ион А, используя для распада окружающую тепловую энергию. Химически такое утверждение означает просто обратимость реакции. Т. е. явление достаточно известное. Имеются многочисленные, хотя и не во всем согласующееся друг с другом опытные данные, по которым время жизни атома столь мало, что не превышает при комнатной температуре тысячных долей секунды, а чаше бывает и того меньше. Значит, если второй электрон «запаздывает с появлением вблизи данной ямы (по причине вполне уважительной - он еще просто не возник) , то когда он, наконец, возникнет в данной яме, у него немало шансов застать ее пустой. Таким образом, образование частицы скрытого изображения придется начинать заново, и чем реже будут возникать свободные электроны, тем более вероятен именно такой ход событии. Допустим, однако, что обстоятельства благоприятны и там, где уже есть один атом, возникнет также и второй. Ситуация резко изменяется: хотя два атома еще не составляют катализатора проявления, их взаимовлияние стабилизирует пару, и вред мя жизни обоих атомов резко увеличивается, т. е. теперь они скорое всего дождутся прихода третьего электрона, образования третьего атома, не распадаясь, а значит, рост группы атомов продолжится беспрепятственно. Многочисленные опыты (о некоторых речь впереди) показали, что время жизни группы даже из двух атомов доходит до многих суток и во всяком случае измеряется часами. Вместе с тем считать тех абсолютно устойчивыми тоже нельзя. Вообще, можно сказать, что среди любых частиц скрытого изображения абсолютно устойчивых не бывает, и даже вполне завершенное скрытое изображение, имеющее свойства катализатора, может постепенно - распадаться (уменьшаясь на одни атом за раз), если время между экспонированием и проявлением велико, скажем, порядка месяцев или лет, а особенно если экспонированный материал r хранится при повышенной температуре. Трудности роста при высоком темпе возникновения свободных электронов не исчерпываются распылением серебра по многим ямам вместо одной. Дело в том, что глубоких ям, надолго захватывающих электрон и тем гарантирующих ему подход нова А+ немного и расположены они, как уже сказано, на поверхностях микрокристаллов, т.е. там, где при химической реакции галогенида серебра с примесями желатины и где после погружения в проявитель легче всего получать электроны от проявляющего вещества. Если свободных электронов много (темп их образования высок) , больше, чем имеется глубоких поверхностных ям, электроны по необходимости закрепляются на всех других мало-мальски глубоких ямах, а среди таких большинство с протяженными дефектами - трещинами и дислокациями.

скрытое фотографическое изображение

СКРЫТОЕ ФОТОГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ (латентное изображение) невидимое глазом изображение, возникающее в светочувствительном слое фотоматериалов в процессе его экспонирования. При проявлении скрытое изображение превращается в видимое в результате выделения атомов серебра в центрах скрытого изображения, причем концентрация серебра увеличивается в миллион раз и более.

Скрытое фотографическое изображение

невидимое изменение, возникающее в светочувствительном материале при действии на него оптического излучения и преобразуемое в процессе фотографической обработки в воспринимаемое человеческим глазом изображение Для этого преобразования, называемого визуализацией, в классической фотографии используют способность С. ф. и. в фотографических эмульсиях катализировать (см. ниже) реакции восстановления галогенидов серебра (Ag Hal, Hal º Br, Cl, I, чаще всего Br) до Ag; в электрофотографии ≈ способность С. ф. и. электростатически притягивать частицы пигмента и т. д.

В приведённом определении С. ф. и. выделено лишь его основное свойство ≈ служить причиной возникновения и предшественником видимого изображения. Такое определение является общим для самых различных процессов его образования (фотохимические изменения в кристаллах светочувствительных солей, поперечной «сшивки» молекул в светочувствительных полимерах, изменения под действием света распределения поверхностного заряда в поляризованных или заряженных диэлектриках или объёмного заряда в полупроводниках и пр.).

С. ф. и. представляет собой «записью изображения предметов или другой оптической информации (спектра, интерференционной картины и т. д.). Последующее рассматривание этой записи глазом в принципе необязательно ≈ считывать записанную информацию можно непосредственно со С. ф. и. (например, голографически или электронным лучом). Однако при любом способе такого считывания С. ф. и. даёт сигнал намного более слабый, чем полученное из него видимое изображение, его уровень недостаточно превышает уровень помех; как следствие ≈ его помехоустойчивость низка. Кроме того, С. ф. и. не всегда достаточно стабильно во времени, чтобы длительно сохранять его без визуализации.

В наиболее распространённом фотографическом процессе на слоях эмульсий AgHal в желатине С. ф. и. образуют малые группы атомов Ag, расположенные в отдельных точках поверхности или объёма микрокристаллов AgHal, ≈ т. н. центры С. ф. и. Эти группы (атомы в них ещё не связаны в кристаллическую решётку) возникают следующим образом. Под действием экспонирующего света в полупроводниковых микрокристаллах AgHal происходит внутренний фотоэффект : электроны ионов галогенида высвобождаются. Кроме того, в кристаллах AgHal всегда заранее присутствует некоторое число свободных подвижных ионов Ag+,»выбитых» со своих мест в результате тепловых колебаний (тепловое расшатывание решётки). Электростатически притягиваясь друг к другу, свободные электроны и ионы рекомбинируют (см. Рекомбинация ионов и электронов) ≈ возникают нейтральные атомы Ag. Этот процесс локализуется там, где на поверхности микрокристаллов расположены различные нарушения структуры решётки AgHal, прежде всего. примесные частицы (в частности Ag2S), образующиеся ещё при изготовлении фотоэмульсии. Формирование центров С. ф. и. на каждом таком нарушении представляет собой многократное повторение двух элементарных актов: захвата фотоэлектрона из объёма микрокристалла (электронная стадия) и электростатического притяжения к электрону подвижного иона Ag+ (ионная стадия). При малых освещенностях фотослоя 1-я стадия протекает медленно (электроны поступают редко), и образовавшийся нейтральный атом Ag может ионизоваться прежде, чем освободится следующий фотоэлектрон. Тем самым вероятность образования центра С. ф. и., обязательно состоящего не из одного, а из нескольких атомов, замедляется, что служит причиной понижения светочувствительности с увеличением выдержки (см. Невзаимозаместимости явление).

В ходе проявления фотографического (визуализации С. ф. и.) экспонированные микрокристаллы AgHal восстанавливаются до металлического Ag. Один из компонентов проявителя (проявляющее вещество) адсорбируется на микрокристаллах и передаёт им электроны, сам при этом окисляясь. Такая передача электронов возможна только при наличии центров С. ф. и., которые должны находиться в контакте с молекулами проявляющего вещества (т. е. на поверхности микрокристаллов). В отсутствие центров С. ф. и. реакция восстановления не протекает; следовательно, они играют в этой реакции роль катализаторов. Каждый раз, когда центр С. ф. и. заряжается, приобретая электрон, этот заряд нейтрализуется одним из ближайших ионов Ag+, и процесс превращения AgHal в Ag продолжается до полного восстановления микрокристалла. Т. о., визуализация в случае галоген серебряных фотоэмульсий в огромной степени увеличивает количество продукта первичной фотохимической реакции.

Квантовый выход образования С. ф. и. в микрокристаллах AgHal (отношение числа образовавшихся нейтральных атомов серебра к числу поглощённых квантов излучения) близок к 1.

Следовательно, для возникновения центра. С. ф. и., содержащего обычно от нескольких атомов до нескольких десятков атомов, один микрокристалл AgHal должен в среднем поглотить от 10 до 100 квантов. После восстановления (проявления) микрокристалл Ag содержит 108≈1010 атомов Ag, что соответствует коэффициенту усиления до 109 (по отношению к числу поглощённых квантов). Усиление С. ф. и. происходит и в других фотографических процессах, но далеко не в такой степени. Поэтому обычный процесс на эмульсионных слоях AgHal непревзойдён по чувствительности, хотя по некоторым показателям (например, по изобразительным характеристикам) он уступает ряду других предложенных (к 1976), процессов.

Лит.: Мейкляр П. В., Физические процессы при образовании скрытого фотографического изображения, М., 1972; Миз К., Джеймс Т., Теория фотографического процесса, пер. с англ., Л., 1973.

Л. Л. Картужанский.

Лекция №9 Сенсибилизированный процесс образования скрытого изображения

Первой ступенью фотографического процесса и единственной его стадией фотохимической стадией является образование скрытого изображения в виде стабильных изменений в кристаллах AgX, эмульгированных в желатине. Со времени открытия фотографии вопрос о природе и механизме образования скрытого изображения привлекал пристальное внимание ученых.

Обычно рассматривают скрытое изображение – катализатор проявления – как агрегат нескольких атомов серебра. Скрытое изображение представляет собой достаточно стабильную, отдельную, четко ограниченную фазу, образующуюся в результате превращений галогенидов серебра. Например, зародыши скрытого изображения можно визиуализировать в результате физического проявления после отделения фазы AgX. Мягким восстановлением слоя галогенида серебра можно получить относительно устойчивые, не способные к проявлению предзародыши. Предзародыши, эти первоначальные агрегаты серебра, могут быть разрушены окислителями (персульфатом, бихроматом и др.). Поскольку для получения зародышей скрытого изображения необходимо 4 световых кванта на зерно AgX, то можно предположить, что малостабильный, но уже дающий эффект проявления агрегат серебра состоит по меньшей мере из 4 его атомов.

По теории Генри и Мотта скрытое изображение образуется вследствие последовательного улавливания фотоэлектронов и межузельных ионов серебра. В реакции Ag + hv образуются пары «электрон-дырка». Электроны и дырки независимо друг от друга в разных местах кристалла AgX улавливаются и нейтрализуются. Ловушками для образовавшихся фотоэлектронов являются илны серебра на углах, гранях, как и центры чувствительности, которые образуются в процессе «химического» созревания на поверхности зерна. Но захват электронов не может происходить по реакции Ag + + е → Ag 0 , так как при этом получается нестабильный атом серебра, который представляет собой ловушку для дырок, и таким образом первичный фотохимический процесс становится обратимым. Улавливание фотоэлектронов и связанное с ним образование скрытого изображения сопровождается одновременным соединением подвижных межузельных ионов серебра. Вследствие этого предотвращается рекомбинация с дырками, причем с ростом числа объединенных атомов серебра увеличивается электронное разрежение в области центров образования зародышей. Процесс сопровождается увеличением стабильности зародыша. Если первичное фотолитическое серебро представляет собой очень нестабильное образование и при недостатке e или Ag + быстро разрушается или перемещается в другое место кристалла, где и улавливается, то предзародыш оказывается первой относительно стабильной ступенью на пути к скрытому изображению. Ионы галогена улавливают дырки, после чего превращается в молекулярный галоген, который может выделяться в отдельную фазу. А ионы серебра покидают свое место в решетке из-за объединения атомов галогенов с их ионами тем самым увеличивают концентрацию Ag + в кристаллах AgX.

СКРЫТОЕ ИЗОБРАЖЕНИЕ - изменение, произведенное в бромистом серебре под действием света, непосредственно не обнаруживаемое, но обусловливающее проявляемость эмульсионного слоя. Это изменение столь мало, что невидимо даже в электронный микроскоп при увеличении в 50 000-100 000 раз. Механизм образования скрытого изображения выяснен в основных его этапах. При попадании кванта актиничного света в эмульсионный микрокристалл энергия этого кванта затрачивается на вырывание одного электрона из иона брома кристаллической решетки бромистого серебра. Образовавшийся фотоэлектрон свободно перемещается по кристаллу (см. Фотопроводимость) до тех пор, пока он не встретит «ловушку». Такой «ловушкой» может служить чужеродная примесь к бромистому серебру, в основном мельчайшие частицы металлического серебра, которые создаются в процессе созревания эмульсии. Эти частицы (центры светочувствительности) расположены главным образом на поверхности микрокристаллов, хотя некоторое их число находится также и в глубине. Центр светочувствительности, захвативший электрон, приобретает отрицательный заряд и притягивает междуузельный ион серебра (см. Кристаллическая решетка), который, соединяясь с электроном, образует атом серебра, откладывающийся на центре светочувствительности.

Этот процесс повторяется, и центр светочувствительности превращается в устойчивый субцентр скрытого изображения. Субцентр состоит из нескольких атомов серебра, но еще не может служить центром проявления, т. е. не является активным центром скрытого изображения. Субцентры играют важную роль в практически важных методах повышения светочувствительности - гиперсенсибилизации- и усиления скрытого изображения. При дальнейшем освещении субцентр доращивается до размеров центра скрытого изображения, и микрокристалл становится проявляемым (см. Проявление фотографическое, теория).

Одновременно с поверхностными центрами скрытого изображения образуются более мелкие глубинные центры скрытого изображения. Так как обычные проявители не содержат достаточного количества растворителей бромистого серебра, то они не могут достичь глубинных центров скрытого изображения и проявить микрокристалл. Поэтому наличие в кристалле большого количества глубинных центров светочувствительности, конкурирующих в отношении захвата фотоэлектронов с поверхностными центрами, приводит к понижению светочувствительности. После вырывания электрона квантом света из иона брома последний превращается в атом брома, который перемещается по микрокристаллу до выхода на поверхность, где он связывается желатиной или другим акцептором брома. В отсутствии акцептора брома последний может снова превратить серебро скрытого изображения в бромистое серебро (см. Соляризация) и светочувствительность эмульсионного слоя уменьшается.

При зарядке фоторецептора коронным разрядом на поверхности фотопроводникового слоя осаждаются заряженные частицы (ионы воздуха). Если принять заряд частицы равным заряду электрона , а поверхностную плотность заряженных частиц обозначить через , то поверхностная плотность заряда может быть рассчитана по формуле . Среднее расстояние между заряженными частицами определяется числом частиц и равно

Между заряженной поверхностью и заземленной подложкой образуется электрическое поле, напряженность которого зависит от диэлектрической проницаемости фотопроводника (относительные единицы).

,

где - электрическая постоянная, равная , где .

Заряженная поверхность приобретает некоторый потенциал (измеряется относительно Земли). Напряженность электрического поля внутри фоторецептора определяется разностью потенциалов его поверхности и заземленной подложки .

Где - толщина слоя фотопроводника.

Отсюда следует, что

Зарядка фоторецептора коронным разрядом

Для зарядки поверхности фоторецептора довольно широко применяется коронный разряд. Образующиеся в разряде ионы осаждаются электрическим полем на поверхности фоторецептора, создавая поверхностный потенциал . Поверхностная плотность осажденного заряда зависит от тока разряда , направленного к фоторецептору. Здесь можно представить три случая. В первом ток направлен на заземленную металлическую пластину:. При этом от разности потенциала коронной проволочки и порогового потенциала зажигания заряда и константы зависит концентрация заряженных частиц в токе разряда. Величина зависит от подвижности ионов, расстояния между проволочкой и заряжаемой пластиной и от диаметра проволочки. Эта формула пригодна для расчета начального тока .

Фоторецептор во время зарядки можно представить как металлическую пластину, экранированную диэлектрической пленкой (фотопроводник в темноте имеет свойства диэлектрика). В этом случае на поверхности фотопроводника накапливается заряд того же знака и поэтому напряжение между коронной проволокой и фоторецептором непрерывно понижается. Вставив в формулу для , получим:

Третий случай - зарядка скоротроном (коротроном с управляющей сеткой).

Здесь ток разряда к фоторецептору где , а , и - потенциал сетки и ток разряда к сетке - ток к фоторецептору в отсутствие сетки, а - ток к фоторецептору при наличии сетки.

Приведенные выше формулы не учитывают темновой разрядки фоторецептора. Если принять, что темновой ток , уменьшающий потенциал фоторецептора, вызван только наличием в фотопроводниковом слое объемного заряда, его можно выразить формулой , где . Величина равняется 0,5…2,0. Плотность тока к фоторецептору равна .

Формулы для расчета потенциала заряжающегося фоторецептора сложны. Приведем некоторые из относительно простых формул, которые могут быть использованы для решения задач данного раздела.

, где -компонент, учитывающий темновой спад потенциала - электропроводность фоторецептора, равная , где - удельное сопротивление, сопротивление участка фоторецептора, - площадь этого участка, а - толщина фоторецептора.

Потенциал зарядки фоторецептора коротроном через время можно рассчитать по приведенной ниже формуле, в которой действие темнового тока не учитывается:

В приведенной выше формуле - электрическая емкость фоторецептора, равная , где - площадь заряженной поверхности, - толщина фотопроводникового слоя, - диэлектрическая проницаемость фоторецептора Ф/м. - константа, зависящая от параметров коротрона и подвижности ионов , которая на воздухе может быть принята равной .

Формулы для зарядки фоторецептора скоротроном при вольтамперной кривой, выраженной формулой и без учета темнового спада потенциала:

В приведенной выше формуле - начальный ток разряда, - электрическая емкость фоторецептора, - скорость перемещения поверхности фоторецептора в зоне зарядки. Ток разряда измеряется на единицу длины проволочки мкА/см или А/м. Скорость перемещения поверхности фоторецептора выражается соответственно в см/с или в м/с, а емкость - в фарадах, или Кл/В.

Максимальный потенциал , до которого можно зарядить фоторецептор скоротроном (без учета темнового спада потенциала) можно рассчитать по формуле:

  1. Среднее расстояние между заряженными частицами на поверхности фоторецептора равно 30нм. Найти поверхностную плотность заряда.
  2. . Найти поверхностный потенциал фоторецептора, если диэлектрическая проницаемость фотопроводникового слоя равна 3,2, а его толщина .
  3. Поверхностная плотность заряда равна . Найти напряженность электрического поля в слое фотопроводника фоторецептора, если его диэлектрическая проницаемость равна 3,0.
  4. Поверхностный потенциал фоторецептора равен 500В. Найти напряженность электрического поля в фотопроводниковом слое фоторецептора, если его толщина равна 25 мкм.
  5. Поверхностный потенциал фоторецептора равен 500В. Найти поверхностную плотность заряда, если фотопроводниковый слой фоторецептора имеет следующие характеристики: диэлектрическая проницаемость фотопроводникового слоя равна 3,5, а его толщина мкм.
  6. Среднее расстояние между заряженными частицами на поверхности фоторецептора равно 30нм. Найти напряженность электрического поля в фотопроводниковом слое фоторецептора, если его диэлектрическая проницаемость равна 3,6.
  7. Поверхностная плотность заряженных частиц равна . Найти величину напряженности электрического поля, если диэлектрическая проницаемость фоторецептора равна 3,2.
  8. Напряженность электрического поля в фоторецепторе равна . Найти поверхностную плотность заряженных частиц, если фоторецептор имеет диэлектрическую проницаемость .
  9. Поверхностный потенциал равен 600В. Найти поверхностную плотность заряженных частиц, если фоторецептор имеет диэлектрическую проницаемость и толщину .
  10. Два фоторецептора различной природы (органический фоторецептор и фоторецептор на основе селенида мышьяка) были заряжены до потенциала 600В. Как различаются величины плотности заряда, обеспечивающие такое значение потенциала на этих фоторецепторах? Органический фоторецептор имеет толщину фотопроводникового покрытия 28 мкм и относительную диэлектрическую проницаемость 3, толщина фотопроводникового слоя на основе селенида мышьяка 60 мкм, а его относительная диэлектрическая проницаемость равна 11.
  11. Фоторецепторы на основе селенида мышьяка и аморфного кремния заряжены до одинаковой плотности заряда . Оба фотопроводниковых покрытия имеют одинаковые величины относительной диэлектрической проницаемости . Толщина слоя селенида мышьяка 50мкм. Какую толщину должен иметь слой аморфного кремния, чтобы потенциалы поверхности обоих фоторецепторов были одинаковыми? Найдите величину этого потенциала.
  12. Определить поверхностный потенциал фоторецептора, если потенциал коронной проволочки 7 кВ, пороговый потенциал равен 3,2 кВ. Проводимостью фоторецептора пренебречь.
  13. Определить напряженность электрического поля в фоторецепторе, если потенциал на коронирующем электроде равен 5,5кВ, пороговый потенциал 3,4 кВ, толщина фоторецептора 15мкм. Проводимостью фоторецептора пренебречь.
  14. Найти поверхностный потенциал фоторецептора, если темновая проводимость слоя , ,· потенциал на коронирующем электроде равен 7,5кВ, пороговый потенциал 3,4 кВ, толщина фоторецептора составляет 25мкм.
  15. , ,·потенциал на коронирующем электроде равен 6,5 кВ, пороговый потенциал 2,5 кВ. Найти толщину слоя фоторецептора, если напряженность электрического поля в слое равна .
  16. Определить пороговый потенциал при условии, что поверхностный потенциал фоторецептора равен 1,6 кВ, потенциал на коронирующем электроде равен 4,5 кВ. Темновой проводимостью фоторецептора пренебречь.
  17. Определить пороговый потенциал коронатора при условии, что поверхностный потенциал фоторецептора равен 600 В, потенциал на коронирующем электроде равен 5,5 кВ. Проводимость слоя фоторецептора равна , ,· толщина фоторецептора составляет 25мкм.
  18. Поверхностный потенциал на фоторецепторе равен 800В, потенциал на коронирующем электроде равен 5,8 кВ, ,·сопротивление участка фоторецептора площадью и толщиной 20мкм равно . Найти пороговый потенциал коронатора.
  19. Найти проводимость фоторецептора при условии, что пороговый потенциал коронатора равен 2,8кВ, поверхностный потенциал фоторецептора равен 800 В, потенциал на коронирующем электроде равен 5,5 кВ, ,· толщина фоторецептора составляет 20мкм.
  20. Темновая проводимость слоя равна , ,·потенциал на коронирующем электроде равен 5,5 кВ, пороговый потенциал 3,5 кВ, толщина фоторецептора составляет 20мкм. Найти напряженность электрического поля в слое.
  21. Потенциал на коронирующем электроде равен 7,5 кВ, пороговый потенциал 3,5 кВ, толщина фоторецептора составляет 20мкм. До какого значения поверхностного потенциала заряжается фоторецептор, если его проводимость равна , , , , , , Построить график зависимости V от .
  22. Найти поверхностную плотность заряда на фоторецепторе, образующуюся при зарядке, если темновая проводимость слоя равна , ,· потенциал на коронирующем электроде равен 7,5 кВ, пороговый потенциал 3,4 кВ, толщина фоторецептора составляет 25мкм. Диэлектрическая проницаемость фоторецептора равна 3,6.
  23. Определить плотности тока коронного разряда I, , который будет течь к фоторецептору в момент достижения его поверхностью потенциалов V=500В и 600В. Для зарядки использован цилиндрический коротрон, его постоянная . Потенциал коронной проволочки равен 8000В, пороговый потенциал .
  24. Определить плотность тока коронного разряда I, при зарядке фоторецептора коротроном задачи 23 до потенциала 600В, если имеет место темновой ток , при B=A.
  25. Определить плотность тока коронного разряда I, , который будет течь к фоторецептору в момент достижения его поверхностью потенциала, равного потенциалу сетки скоротрона. Величины констант А равняются: , а . Потенциал, подаваемый на коронную проволочку равен 8100В, пороговый потенциал 4100В, потенциал, подаваемый на сетку скоротрона 600В.
  26. Скорость зарядки фоторецептора увеличена в 1,5 раза. Какие параметры процесса зарядки следует изменить, чтобы потенциал поверхности заряженной пластины не изменился?
  27. Во сколько раз следует изменить ток разряда , чтобы при увеличении скорости зарядки в 1,2 раза потенциал зарядки не изменился?

Скрытое электростатическое изображение состоит из электрических зарядов. Чтобы его получить, участки, где в соответствии с изображением не должно быть заряда, подвергают фоторазрядке, сообщая определенное количество освещения - экспозицию Н. Потенциал на освещенных участках падает. График зависимости потенциала поверхности фоторецептора от полученной ею экспозиции называют фотоиндуцированной разрядной кривой (ФИРК). Ее можно построить в координатах для монохроматического излучения и или для интегрального излучения.

Для прямолинейного участка ФИРК можно записать следующее математическое выражение: ., где

,

Спектральная чувствительность, определяемая по образованию скрытого электростатического изображения, которая выражается в или ; - эффективность фоторецептора, определяемая как отношение числа фотогенерированных свободных носителей заряда, разряжающих поверхностный заряд фоторецептора, к числу поглощенных фотонов, - поверхностный потенциал до начала экспонирования, - световой поток, - коэффициент поглощения в генерационном слое, - экспозиция, даваемая уравнением

,

где h - постоянная Планка, с - скорость света, - длина волны экспонирующего света. Как следует из уравнений, по линейному участку ФИРК можно определить чувствительность фоторецептора и его эффективность. Интегральная чувствительность дается выражением

.

В технических характеристиках фоторецепторов светочувствительность выражается как обратная величина критериальной экспозиции, необходимой для снижения начального потенциала на 20 или процентов (обычно 50%): и . Из этого определения следует связь между и и .

Формирование скрытого изображения состоит из следующих стадий: образование в генерационном слое свободных носителей зарядов, инжекция носителей заряда в транспортный слой, перемещение зарядов к поверхности и нейтрализация поверхностного заряда.

Для скорости генерации свободных носителей зарядов можно записать формулу:

Коэффициент поглощения пигмента, генерирующего заряды, зависит от длины волны излучения, поэтому скорость генерации свободных зарядов определяется кривой поглощения пигмента и спектральным составом излучения, падающего на поверхность фоторецептора .

Величина квантовой эффективности образования свободных носителей заряда определяется квантовой эффективностью образования электронно-дырочных пар, , и долей электронно-дырочных пар, участвующих в образовании свободных носителей заряда. Все эти величины зависят от длины волны поглощенного излучения.

Где - кулоновский радиус, а -расстояние друг от друга носителей заряда в момент образования электронно-дырочной пары.

Скорость пролета носителей заряда в транспортном слое пропорциональна напряженности электрического поля. - скорость пролета заряда в м/с, - подвижность носителя заряда, имеющая размерность, а E- напряженность в В/м. Зависимость величины от расстояния между транспортными центрами r, абсолютной температуры T и напряженности электрического поля E описывается эмпирическим уравнением Гилла:

.

Здесь. - не зависящий от температуры и поля предэкспоненциальный множитель, . - энергия активации подвижности носителей заряда в поле . - энергия активации в нулевом поле, . - постоянная Больцмана, равная 1,38 Дж/К, Т и .- температуры измерения и характеристическая для данного фоторецептора температура, К, r - среднее расстояние между транспортными центрами .,где с - концентрация транспортных центров, ., . - постоянная спада волновой функции транспортного центра (как правило, ., . - константа, приблизительно равная.

  1. Подвижность носителей заряда в транспортном слое равна. Определить время пролета носителей через слой, если его толщина равна 20 мкм и поверхностный потенциал составляет 850 В.
  2. Определить время пролета носителей через слой, если его толщина равна 25 мкм, плотность поверхностного заряда . и диэлектрическая проницаемость фоторецептора 3,4.
  3. Подвижность дырок в фоторецепторе равна., поверхностный потенциал 700 В и толщина транспортного слоя 25 мкм. Определить время пролета дырок через слой.
  4. Поверхностная концентрация однозарядных ионов заряженного фоторецептора составляет. Определить время пролета через транспортный слой для носителей заряда, если диэлектрическая проницаемость слоя равна 3,3, толщина слоя 25 мкм, подвижность.
  5. Определить толщину транспортного слоя при условии, что подвижность носителей заряда равна., толщина транспортного слоя 25 мкм и поверхностный потенциал 700 В.
  6. В электрофотографическом аппарате блок экспонирования и блок проявления расположены под углом. Найти максимальную частоту вращения барабана, при которой не ухудшается качество копий, если подвижность носителей заряда в транспортном слое равна., его толщина 20 мкм и поверхностный потенциал составляет 850 В.
  7. Время пролета носителей заряда через транспортный слой равно 15мс. Определить подвижность носителей заряда, если поверхностный потенциал равен 650 В, а толщина слоя 25 мкм.
  8. Каким должен быть поверхностный потенциал, если время между экспонированием и проявлением электростатического изображения в электрофотографическом аппарате составляет 3,5 с при условии, что толщина транспортного слоя равна 14 мкм и подвижность носителей заряда составляет.
  9. Поверхностный потенциал фоторецептора равен 750 В, подвижность носителей заряда . Как изменится время пролета, если толщина транспортного слоя равна 5, 10, 15, 25, 30, 40 мкм? Построить график этой зависимости.
  10. При комнатной температуре подвижность равна . Как изменится подвижность при нагревании фоторецептора до ? Энергия активации подвижности равна 0,35 эВ.
  11. При подвижность равна . Определить энергию активации подвижности.
  12. Найти величину электрического поля, при которой для данного фоторецептора подвижность носителей заряда не зависит от температуры. Энергия активации в нулевом поле равна 0,3 эВ.
  13. Максимальное расстояние между транспортными центрами в транспортном слое, при котором реализуется электронный транспорт, составляет . Какая концентрация транспортных центров соответствует этому расстоянию? Ответ получить в . Величина .

Разрешающая способность скрытого электростатического изображения на фоторецепторе выражается уравнением

где и - подвижности в нулевом поле и в поле E. Суммарная разрешающая способность электрофотографического процесса определяется выражением

.

В этих формулах R - разрешающая способность процесса в целом, - предельная разрешающая способность скрытого изображения, - разрешающая способность проявления, определяемая размером частиц тонера, - разрешающая способность, определяемая структурой материала.

  1. Как изменится предельная разрешающая способность скрытого электростатического изображения при подвижности , , , ,
  2. Найти разрешающую способность скрытого электростатического изображения при и температуре , если , .
  3. Найти, как изменяется разрешающая способность с увеличением напряженности электрического поля в ряду , , , , , , , , В/см при температуре , , . Построить график в координатах , lgE.
  4. Средний диаметр частиц тонера равен 6 мкм, , К. Тонерное изображение с фоторецептора переносится на специальную полимерную пленку для лазерного принтера. Определить суммарную разрешающую способность полученного изображения.
  5. Определить разрешающую способность скрытого электростатического изображения при температурах 15, 20, 25, 30, 35 и , если , и подвижности . Построить график зависимости , от температуры.

Электрическое поле в зоне проявления над равномерно заряженной поверхностью фоторецептора .

В зоне проявления заряженная поверхность фоторецептора оказывается между двумя электродами - подложкой фоторецептора и проявляющим валиком. В этом случае электрическое поле, создаваемое зарядом с поверхностной плотностью , распределяется между фотопроводниковым слоем и зоной проявления. Если оба электрода заземлены, то напряженность электрического поля над равномерно заряженным участком скрытого изображения выражается следующей формулой:

При подаче на проявляющий валик потенциала смещения, отличного от нуля, уравнение (1) приобретает вид:

(2)

В уравнениях (1) и (2) - и - относительная диэлектрическая проницаемость фоторецептора и зоны проявления, в которой находится проявитель, d -величина зазора между проявляющим электродом (проявляющим валиком) и фоторецептором, L - толщина слоя фотопроводника, V - потенциал сплошного участка скрытого изображения, - потенциал смещения, подаваемый на проявляющий валик.

Величина , обычно невелика по сравнению с величиной d. Поэтому если при расчете напряженности электрического поля в зоне проявления не требуется большая точность, можно использовать упрощенную формулу:

Электрическое поле в зоне проявления над скрытым штриховым изображением, представляющим периодический штриховой рисунок

Если плотность заряда в скрытом штриховом изображении (линейной решетке) изменяется по синусоидальному закону, то для него можно записать следующее математическое выражение:

где - постоянная составляющая, равная усредненной по площади поверхностной плотности заряда:

Переменная составляющая показывает отклонение плотности заряда от средней величины при перемещении вдоль оси y. Параметр k является пространственной частотой, равной , где - период зарядового рельефа (например, расстояние между центрами штрихов). В свою очередь, , где n - частота линий в решетке. Величины k и n связаны между собой формулой . Величина k выражается в радианах на миллиметр .

Зависимость нормальной составляющей напряженности электрического поля от потенциалов скрытого изображения для такого штрихового рисунка удобно выразить формулой:

где: , , .

Для центра штрихов . Величина - представляет собой электростатический контраст, численно равный разности электрических потенциалов изображения и фона, - потенциал смещения на проявляющем электроде.

Если потенциал смещения равен потенциалу фона: , то уравнение (3) упростится до выражения (4):

из которого видно, что электрическое поле над штриховым изображением определяется электростатическим контрастом скрытого изображения .

Перепишем уравнение (3) следующим образом:

. (5)

Первый член уравнения представляет собой постоянную составляющую проявляющего электрического поля. Она соответствует напряженности поля над сплошным участком скрытого изображения, заряд которого равен усредненному по площади заряду штрихового изображения и не зависит от расстояния z.

Второй член уравнения (5) - переменная составляющая поля. Она связана со штриховым изображением и изменяется с расстоянием от фоторецептора. При больших величинах z, когда , переменная составляющая формулы (5) исчезает. Электрическое поле станет равномерным, зависящим только от и . Его напряженность можно выразить следующим уравнением:

3. В случае равномерно заряженного участка скрытого изображения (центра плашки) частота . В этом случае ; , а . Выражение (3) упрощается до выражения (1):

, где (3),

  1. Потенциал участка поверхности фоторецептора равен 800В. Найти напряженность электрического поля в зазоре между проявляющим электродом и поверхностью фоторецептора, если проявитель в зоне проявления отсутствует и проявляющий электрод заземлен. Толщина фоторецептора L=20мкм, а зазор d равен 300мкм. Относительная диэлектрическая проницаемость фоторецептора 3,0.
  2. Потенциал поверхности фоторецептора равен -600В. На проявляющий электрод подано напряжение смещения -100В. Найти напряженность электрического поля в зоне проявления, если толщина фоторецептора равна 25мкм, величина зазора 300мкм, величины относительной диэлектрической проницаемости фоторецептора и зоны проявления одинаковы.
  3. Поверхностная плотность заряда равна . Найти·поверхностный потенциал, если диэлектрическая проницаемость фоторецептора , его толщина L=20 мкм. Характеристики зоны проявления , d=250 мкм.
  4. Какова будет напряженность электрического поля в зоне проявления над равномерно заряженным фоторецептором, если высота зоны составит 100 мкм? 1000 мкм? Потенциал поверхности во всех случаях 600 В, потенциал смещения на проявляющем электроде -200 В.
  5. Как изменится напряженность электрического поля для сплошного участка скрытого электростатического изображения с потенциалом -400 при изменении напряжения смещения на проявляющем электроде с -100 В до -200 В?
  6. Толщину фотопроводникового слоя фоторецептора L изменили с 20 мкм до 30 мкм. Как изменится напряженность электрического поля в зоне проявления, если потенциал поверхности фоторецептора равен -600 В, величины относительной диэлектрической проницаемости фоторецептора и зоны проявления равны 9,0. Расстояние от фоторецептора до проявляющего валика 150мкм.
  7. При каком расстоянии от равномерно заряженного фоторецептора до проявляющего валика напряженность проявляющего электрического поля можно рассчитывать по формуле ? Толщина фотопроводникового слоя фоторецептора равна 20 мкм, а его диэлектрическая проницаемость равна . Диэлектрическая проницаемость зоны проявления . Процент ошибки не должен превышать 10%.
  8. Как будут различаться величины напряженности электрического поля в зоне проявления при осаждении тонера на равномерно заряженные участки двух фоторецепторов, если они имеют разные величины относительной диэлектрической проницаемости и 9,0? Толщины фотопроводниковых слоев одинаковые (40 мкм). Проявляющий валик удален от фоторецептора на расстояние 2,0 мм, Относительная диэлектрическая проницаемость тонерного облака в зоне проявления 3,0.
  9. Постройте потенциальный рельеф скрытого изображения синусоидальной решетки при пространственной частоте , максимальной поверхностной плотности заряда и минимальной плотности, равной 0,0. Построение провести для периода .
  10. Определить напряженность электрического поля в зоне проявления над центрами штрихов скрытого электростатического изображения синусоидальной решетки, если потенциал смещения на проявляющем электроде равен фоновому потенциалу. Максимальная и минимальная плотности заряда равны , а период решетки равен 50 мкм. Величина зазора между фоторецептором и проявляющим валиком 100 мкм.
  11. Как возрастет напряженность электрического поля над центрами штрихов, если проявляющий электрод, находившийся на расстоянии 100 мкм, придвинули ближе к фоторецептору на расстояние 50 мкм.
  12. На каком расстоянии от поверхности фоторецептора поле над штриховым изображением станет практически равномерным? Этому условию отвечает p(z)=0,1. Скрытое изображение представляет собой синусоидальную решетку с амплитудой , минимальным зарядом, равным 0,0 и пространственной частотой . Расстояние между фоторецептором и проявляющим электродом 100 мкм
  13. .
  14. Зарядовое изображение на поверхности фоторецептора представляет собой синусоидальную периодическую решетку с периодом 20 мкм, максимальной плотностью заряда и минимальной . Найти, как скажется на предельной высоте зоны проявления zmax изменение зазора между проявляющим валиком и фоторецептором с 100мкм до 250мкм. На высоте p(z)=0,1=0,05.
  15. Рассчитайте напряженность проявляющего электрического поля у поверхности фоторецептора над центрами штрихов скрытого изображения миры. Толщина фоторецептора L= 40 мкм, его диэлектрическая проницаемость равна , толщина зоны проявления d=100 мкм, диэлектрическая проницаемость зоны проявления равна , период штрихового рисунка 40 мкм, потенциал штриха в его центре V=-500В, потенциал фона равен нулю. Проявляющий валик заземлен.
  16. Рассчитайте напряженность электрического поля в зоне проявления Ez над центрами штрихов рисунка миры у поверхности проявляющего электрода. Толщина фоторецептора L= 40 мкм, его относительная диэлектрическая проницаемость равна , толщина зоны проявления d=100 мкм, относительная диэлектрическая проницаемость зоны проявления равна 5, период штрихового рисунка 40 мкм, потенциал штриха в его центре V=-500В, потенциал фона равен -100 В. Напряжение смещения на проявляющем валике -100 В.
  17. Рассчитайте напряженность электрического поля в зоне проявления Ez над центрами штрихов рисунка миры на расстоянии 40 мкм от поверхности фоторецептора. Толщина фоторецептора L= 20 мкм, его относительная диэлектрическая проницаемость равна , толщина зоны проявления d=100 мкм, относительная диэлектрическая проницаемость зоны проявления равна 5, период штрихового рисунка 40 мкм, потенциал штриха в его центре V=-500В, потенциал фона равен нулю. Проявляющий валик заземлен.
  18. Для условий задачи 16 постройте график изменения напряженности электрического поля в зоне проявления вдоль нормали к поверхности фоторецептора.
  19. Для штрихового рисунка с периодом мкм постройте график зависимости параметра p(z) от расстояния z от поверхности фоторецептора. Расстояние от фоторецептора до проявляющего электрода равно 1000 мкм. Расчет производить для центра штриха.
  20. Рассчитайте напряженность электрического поля на расстоянии 20 мкм (по нормали) от центров штрихов скрытого изображения линейной решетки с пространственной частотой . Толщина фоторецептора L= 20 мкм, его относительная диэлектрическая проницаемость равна , толщина зоны проявления d=100 мкм, относительная диэлектрическая проницаемость зоны проявления равна , расстояние между фоторецептором и проявляющим электродом 100 мкм. Потенциал фона равен , потенциал штрихов равен потенциалу смещения .
  21. Определите величину и направление нормальной составляющей напряженности электрического поля на расстоянии 20 мкм от скрытого изображения линейной решетки с пространственной частотой . Расчеты провести для центров штрихов и центров просветов Толщина фоторецептора L= 20 мкм, его относительная диэлектрическая проницаемость равна , относительная диэлектрическая проницаемость зоны проявления равна 5, расстояние между фоторецептором и проявляющим электродом 100 мкм. Потенциалы скрытого изображения равны , , потенциал смещения на проявляющем электроде .

На удельный заряд тонера q/m. В результате получим:

Двухкомпонентный проявитель состоит из ферромагнитных частиц носителя, покрытых более мелкими частицами тонера. Тонер удерживается на носителе, в основном, силами электростатического притяжения. Оно возникает, поскольку при трении тонера и носителя друг о друга на их частицах возникают заряды противоположных знаков (трибоэлектризация). К трибоэлектрической зарядке способна не вся поверхность частицы тонера, а только ее активные участки. То же относится и к носителю.

Если число активных участков носителя достаточно велико для полной зарядки частиц тонера, то справедливо следующее выражение:

(12),

где q/m - удельный заряд тонера, - максимальный заряд частицы тонера, - масса частицы тонера, e- заряд электрона, - число заряженных участков частицы тонера, - число частиц тонера - разность работы выхода электрона из тонера и носителя.

Если число активных участков на носителе ограничено, то удельный заряд тонера зависит от его относительной концентрации и может быть рассчитан по формуле:

(13),

где N - число активных участков на частице носителя, - масса частицы носителя, - относительная концентрация тонера.

Частицы проявителя образуют магнитную кисть, щетинки которой состоят из частиц проявителя, выстроившихся по силовым линиям магнитного поля. В зоне проявления электрическое поле отрывает от носителя частицы тонера и переносит их на скрытое электростатическое изображение. Для такого переноса поле должно преодолеть силы, удерживающие тонер на носителе. Частицы тонера имеют диэлектрические свойства. Носитель может иметь свойства диэлектрика, либо обладать электропроводностью. При диэлектрической магнитной кисти по мере ухода частиц тонера с частиц носителя образуется некомпенсированный заряд, который также удерживает тонер силой:

Площадь, проекции на фоторецептор одной частицы проявителя, p - плотность упаковки поверхности фоторецептора проявителем, ?- отношение линейных скоростей проявляющего валика и фоторецептора. Отсюда, .

  • Рассчитать заряд частицы носителя, зарядившей 250 частиц тонера, если отношение массы носителя к его заряду равно , величины работы выхода электрона из тонера и носителя W соответственно равны 5,3 и 4,3 эВ. Заряд электрона e равен , диаметр частицы носителя , плотность носителя . Частицы носителя имеют сферическую форму.
  • Определить, как изменится удельный заряд тонера при изменении концентрации тонера с 1 до 3 вес. %, если число активных участков на носителе ограничено? Если число активных участков тонера достаточно для полной зарядки частиц тонера?
  • Определить относительную концентрацию тонера , если частица носителя диаметром мкм покрыта 250 частицами тонера, имеющими диаметр мкм. Плотность частиц тонера , плотность частиц носителя . Частицы тонера и носителя считать сферическими.
  • Графики зависимости m/q (тонер) от относительной концентрации тонера представляют собой прямые линии, наклон которых не зависит от размера тонерных частиц. Для концентрации тонера 2% величина m/q для тонера диаметром 6,5 мкм составляет 0,04г/мкКл, а тангенс угла наклона кривой равен 0,0052г/(мкКл·%). Для тонера с диаметром частиц 14 мкм величина m/q составляет 0,05 г/мкКл. При какой относительной концентрации тонера диаметром 14 мкм он получит удельный заряд, равный 25 мкКл/г?
  • Как изменится поверхностная плотность осажденного тонера при изменении радиуса частицы двухкомпонентного проявителя с 120 мкм до 80 мкм?
  • При линейной скорости вращения фоторецептора 2,5 см/с, скорости проявляющего валика 7,5 см/с и потенциале проявляемого сплошного участка скрытого изображения -500 В поверхностная концентрация тонерного изображения составила . Как изменится поверхностная концентрация тонерного изображения, если скорость проявляющего валика повысить до 15,0 см/с? снизить до 5,0 см/с?
  • Как изменится поверхностный заряд тонерного изображения при проявлении сплошного участка скрытого изображения, если число тонерных частиц на частице носителя изменяется вдвое?
  • Рассчитать, во сколько раз возросла сила, с которой тонер удерживается диэлектрическим носителем, после того как с него ушло на проявление 50 частиц тонера (по сравнению с силой после ухода двух частиц). Во сколько раз должна возрасти пороговая напряженность электрического поля, чтобы преодолеть эту силу?
  • При однокомпонентном проявлении магнитным тонером определить величину порогового потенциала, если = 300 мкм, сила магнитного притяжения равна FM Н, сила электростатического притяжения тонера к валику , заряд частицы тонера .