Газовые термометры принцип действия. Газовые термометры. В зависимости от исполнения медицинские градусники бывают

Газовый термометр

прибор для измерения температуры, действие которого основано на зависимости давления или объёма идеального газа от температуры. Чаще всего применяют Г. т. постоянного объёма (рис. ), который представляет собой заполненный газом баллон 1 неизменного объёма, соединённый тонкой трубкой 2 с устройством 3 для измерения давления. В таком Г. т. изменение температуры газа в баллоне пропорционально изменению давления. Г. т. измеряют температуры в интервале от Газовый термометр2К до 1300 К. Предельно достижимая точность Г. т. в зависимости от измеряемой температуры 3·10 -3 - 2·10 -2 град. Г. т. такой высокой точности - сложное устройство; при измерении им температуры учитывают: отклонения свойств газа, заполняющего прибор, от свойств идеального газа; изменения объёма баллона с изменением температуры; наличие в газе примесей, особенно конденсирующихся; сорбцию (См. Сорбция) и десорбцию газа стенками баллона; диффузию (См. Диффузия) газа сквозь стенки, а также распределение температуры вдоль соединительной трубки.

Температурная шкала Г. т. совпадает С термодинамической температурной шкалой, и Г. т. применяется в качестве первичного термометрического прибора (см. Температурные шкалы). При помощи Г. т. определены температуры постоянных точек (реперных точек) Международной практической температурной шкалы (См. Международная практическая температурная шкала).

Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954.

Д. Н. Астров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Газовый термометр" в других словарях:

    Прибор для измерения темп ры Т, действие к рого основано на зависимости давления р или объёма V идеального газа от темп ры: pV RT (R газовая постоянная). На измерениях темп ры Г. т. построены совр. температурные шкалы. Г. т. применяется как… … Физическая энциклопедия

    Газовый термометр прибор для измерения температуры, основанный на законе Шарля. Принцип работы В конце XVIII в. Шарль установил, что одинаковое нагревание любого газа приводит к одинаковому повышению давления, если при этом объём… … Википедия

    Прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Заполненный гелием, азотом или водородом баллон, соединенный при помощи капилляра с манометром, помещают в среду, температуру… … Большой Энциклопедический словарь

    газовый термометр - — Тематики нефтегазовая промышленность EN gas thermometer … Справочник технического переводчика

    ГАЗОВЫЙ ТЕРМОМЕТР - прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Чаще всего применяют газовый термометр постоянного объема (рис. Г 4), в котором изменение температуры газа в баллоне… … Металлургический словарь

    газовый термометр - dujinis termometras statusas T sritis Standartizacija ir metrologija apibrėžtis Termometras, kurio veikimas pagrįstas idealiųjų dujų slėgio arba tūrio priklausomybe nuo temperatūros. atitikmenys: angl. gas thermometer; gas expansion thermometer… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    газовый термометр - dujinis termometras statusas T sritis fizika atitikmenys: angl. gas thermometer; gas expansion thermometer vok. Gasthermometer, n rus. газовый термометр, m; газонаполненный термометр, m pranc. thermomètre à gaz, m … Fizikos terminų žodynas

    Прибор для измерения температуры, действие которого основано на зависимости давления или объёма газа от температуры. Заполненный гелием, азотом или водородом баллон, соединённый при помощи капилляра с манометром, помещают в среду, температуру… … Энциклопедический словарь

    Газовый термометр - прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Чаще всего применяют газовый термометр постоянного объема, в котором изменение температуры газа в баллоне пропорционально… … Энциклопедический словарь по металлургии

    Прибор для измерения темп ры, действие к рого осн. на зависимости давления или объёма идеального газа от темп ры. Чаще всего применяют Г. т. пост. объёма (см. рис. при ст. Термометр), в к ром изменение темп ры газа в баллоне пропорционально… … Большой энциклопедический политехнический словарь

1й курс. 2й семестр. Лекция 11

Лекция 11.

Уравнение состояния термодинамической системы . Уравнение Клапейрона-Менделеева. Идеально-газовый термометр. Основное уравнение молекулярно-кинетической теории. Равномерное распределение энергии по степеням свободы молекул. Внутренняя энергия идеального газа. Эффективный диаметр и средняя длина свободного пробега молекул газа. Экспериментальные подтверждения молекулярно-кинетической теории.

Уравнение состояния термодинамической системы описывает зависимость между параметрами системы . Параметрами состояния являются – давление, объём, температура, количество вещества. В общем виде уравнение состояния - это функциональная зависимостьF(p,V,T) = 0.

Для большинства газов, как показывает опыт, при комнатной температуре и давлении около 10 5 Па достаточно точно выполняетсяуравнение Менделеева-Клапейрона :

p – давление (Па),V – занимаемый объём (м 3),R =8,31 Дж/мольК – универсальная газовая постоянная, Т – температура (К).

Моль вещества – количество вещества, содержащее число атомов или молекул, равное числу Авогадро
(столько атомов содержится в 12 г изотопа углерода 12 С). Пустьm 0 – масса одной молекулы (атома),N – количество молекул, тогда
- масса газа,
- молярная масса вещества. Поэтому количество молей вещества равно:

.

Газ, параметры которого удовлетворяют уравнению Клапейрона-Менделеева, является идеальным газом. Наиболее близки по свойствам к идеальному – водород и гелий.

Идеально-газовый термометр.

Газовый термометр постоянного объёма состоит из термометрического тела – порции идеального газа, заключённого в сосуд, который с помощью трубки соединён с манометром.

С помощью газового термометра можно опытным путём установить связь между температурой газа и давлением газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки манометра уровень в его правой трубке доводят до опорной метки и измеряют разность высот уровней жидкости в манометре. Учёт различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объёма, равной 0,001 К.

Газовые термометры имеют то преимущество, что определяемая с их помощью температура при малых плотностях газа не зависит от его природы, а шкала такого термометра хорошо совпадает с абсолютной шкалой температур, определяемой с помощью идеально-газового термометра.

Таким способом определённая температура связана с температурой в градусах Цельсия соотношением:
К.

Нормальные условия состояния газа – состояние, при котором давление равно нормальному атмосферному:р = 101325 Па10 5 Па и температура Т = 273,15 К.

Из уравнения Менделеева-Клапейрона следует, что объём 1 моля газа при нормальных условиях равен:
м 3 .

Основы МКТ

Молекулярно-кинетическая теория (МКТ) рассматривает термодинамические свойства газов с точки зрения их молекулярного строения.

Молекулы находятся в постоянном беспорядочном тепловом движении, постоянно сталкиваясь друг с другом. При этом они обмениваются импульсом и энергией.

Давление газа.

Рассмотрим механическую модель газа, находящегося в термодинамическом равновесии со стенками сосуда. Молекулы упруго сталкиваются не только друг с другом, но и со стенками сосуда, в котором находится газ.

В качестве идеализации модели заменим атомы в молекулах материальными точками. Величина скорости всех молекул предполагается одинаковой. Также предполагаем, что материальные точки не взаимодействуют друг с другом на расстоянии, поэтому потенциальную энергию такого взаимодействия принимаем равной нулю.

П
усть
– концентрация молекул газа,Т – температура газа,u – средняя скорость поступательного движения молекул. Выберем систему координат так, чтобы стенка сосуда лежала в плоскостиXY, а осьZ- направлена перпендикулярно стенке внутрь сосуда.

Рассмотрим удары молекул о стенки сосуда. Т.к. удары упругие, то после удара о стенку импульс молекулы меняет направление, но его величина не меняется.

За период времени t до стенки долетят только те молекулы, которые находятся от стенки на расстоянии не далее, чемL = u t . Общее число молекул в цилиндре с площадью основанияS и высотойL , объём которого равенV = LS = u t S , равноN = n V = n u t S .

В данной точке пространства можно условно выделить три различных направления движения молекул, например, вдоль осей X,Y,Z. Молекула может двигаться вдоль каждого из направлений «вперед» и «назад».

Поэтому по направлению к стенке будут двигаться не все молекулы в выделенном объёме, а только шестая часть от их общего числа. Следовательно, количество молекул, которые за время t ударятся о стенку, будет равно:

N 1 = N /6= n u t S /6.

Изменение импульса молекул при ударе равно импульсы силы, действующей на молекулы со стороны стенки, - с такой же по величине силой молекулы действуют на стенку:

P Z = P 2 Z P 1 Z = F t , или

N 1 m 0 u – ( N 1 m 0 u ) = F t ,

2N 1 m 0 u = F t ,

,

.

Откуда находим давление газа на стенку:
,

где
- кинетическая энергия материальной точки (поступательного движения молекулы). Следовательно, давление такого (механического) газа пропорционально кинетической энергии поступательного движения молекул:

.

Это уравнение называется основным уравнением МКТ .

Закон равномерного распределения энергии по степеням свободы .

Количеством степеней свободы тела i называется минимальное количество координат, которые надо задать для однозначного определения положения тела.

Для материальной точки это три координаты ( x , y , z ) –поэтому количество степеней свободы для материальной точки равноi =3.

Для двух материальных точек, соединённых жестким стержнем постоянной длины , необходимо задать5 координат : 3 координаты для одной точки и 2 угла для определения положения второй точки относительно первой. Поэтому в этом случае количество степеней равноi =5.

Максимально возможно количество степеней свободы, связанных с движением в пространстве ,равно 6 .

Вещество

Химическое

обозначение

Молярная масса ,

Число степеней свободы одной молекулы i

Атомарный водород

Молекулярный водород

Атомарный азот

Молекулярный азот

Атомарный кислород

Молекулярный кислород

Закон равномерного распределения энергии по степеням свободы гласит, что средняя кинетическая энергия, приходящаяся на одну степень свободы при тепловом движении равна :

,

где
- постоянная Больцмана (Дж/К). Поэтому полная кинетическая энергия одной молекулы, у которой число степеней свободы равноi определяется соотношением:

.

Замечание . Кроме степеней свободы, связанных с движением тела в пространстве, могут существовать и степени свободы, связанные с собственными колебаниями тела. Их принято называть колебательными степенями свободы. При колебательных степенях свободы надо учитывать и потенциальную и кинетическую энергии колебаний, поэтомуна одну колебательную степень свободы приходится энергия kT .

Средняя кинетическая энергия поступательного движения молекулы равна, очевидно, кинетической энергии движения центра масс (как точки), поэтому:

.

Средняя кинетическая энергия вращательного движения (вокруг центра масс) молекулы:

. .

Подставим в основное уравнение МКТ выражение для
и получим:

.

Т.к. концентрация молекул
, полное число молекул
, постоянная Больцмана
, то получаем уравнение:
или

.

Это уравнение Менделеева-Клапейрона, справедливое для идеального газа . Следовательно, механическая модель газа, в котором молекулы заменены материальными точками, не взаимодействующими на расстоянии друг с другом, является идеальным газом. Поэтому говорят, чтоидеальный газ состоит из материальных точек, не взаимодействующих друг с другом на расстоянии .

Средний квадрат скорости , одинаковый для всех молекул, можно определить из соотношения:

или
.

Средней квадратичной скоростью называется величина:

.

Так как у идеального газа отсутствует потенциальная энергия взаимодействия молекул, то внутренняя энергия равна суммарной кинетической энергии всех молекул :

.

Из этого соотношения следует, как и предполагалось, что температура – это мера внутренней энергии идеального газа.

Закон Дальтона.

Пусть газ представляет смесь различных идеальных газов (например, трёх) с концентрациями n 1 ,n 2 ,n 3 , находящихся при одинаковой температуре. Тогда суммарная концентрация смеси равна сумме концентраций каждого из газов:n =n 1 +n 2 +n 3 .

Действительно, .

Парциальным давлением газа называется давление газа, которое он имел бы в отсутствие других газов при тех же объёме и температуре.

Закон Дальтона гласит, что д авление газовой смеси равно сумме парциальных давлений газов смес и:

P = n k T = (n 1 + n 2 + n 3 )kT = n 1 k T + n 2 k T + n 3 k T = p 1 + p 2 + p 3 .

Давление газовой смеси определяется только концентрацией газов и температурой смеси.

Пример .Определить среднюю молярную массу смеси, состоящей из 1 =75% азота и 2 =25% кислорода .

Решение .По закону Дальтона давление газовой смеси равно сумме парциальных давлений каждого из газов: р = р 1 + р 2 . С другой стороны, из уравнения Менделеева – Клапейрона для смеси:
, гдеm=m 1 +m 2 – суммарная масса смеси,

и для каждого из газов можно найти парциальное давление:
,
.

Откуда:
. Следовательно,

Замечание . Смесь газов, приведённая в задаче, близка по составу к обычному воздуху. Поэтому можно для воздуха принять
.

Длина свободного пробега молекулы .

Длина свободного пробега молекулы - это среднее расстояние, которое пролетает молекула между двумя последовательными столкновениями с другими молекулами.

Замечание . Если молекула чаще сталкивается с другими молекулами, чем со стенками сосуда, то это означает, что размеры сосуда много больше длины свободного пробега.

Рассмотрим газ, состоящий из одинаковых молекул. Размерами молекул не пренебрегаем, но средние значения величин скоростей молекул считаем одинаковыми.

Две молекулы столкнутся, если центр одной из них находится на расстоянии не большем, чем d = 2r от центра другой при их встречном движении (r – радиус молекулы). Пусть одна из них покоится, а вторая налетает с относительной скоростьюv ОТН. Рассмотрим прямой цилиндр, связанный с этой покоящейся молекулой, определяемый условием, что внутри цилиндра не должно быть других молекул. Если объём этого цилиндра
(L – расстояние до соседней молекулы), то объём всего газа можно определить какV =N V 0 , гдеN – количество молекул. Тогда концентрация молекул
. Откуда получаем, что
.

Если - длина свободного пробега, то время между двумя последовательными столкновениями не зависит от системы отсчета. Пусть - средняя скорость молекул, тогда

, откуда
.

Относительная скорость двух молекул
, поэтому

Усредняем это выражение:

Очевидно, что среднее значение
за период равно нулю:
. Поэтому
, так как по предположению
. Вообще-то,
, но в грубом приближении можно записать, что
.

Окончательно, для длины свободного пробега молекул получаем формулу:
.

Величина
называетсяэффективным сечением взаимодействия молекул . Принято считать, что эта величина слабо зависит от температуры.

Длина свободного пробега молекул обратно пропорциональна концентрации молекул:

.

Средняя частота соударений молекул газа между собой :
.

Экспериментальные подтверждения молекулярно-кинетической теории.

Наиболее известными экспериментами, демонстрирующими молекулярную структуру вещества и подтверждающими молекулярно-кинетическую теорию, являются опыты Дюнуайе и Отто Штерна, выполненные соответственно в 1911 и 1920 годах. В этих опытах молекулярные пучки создавались путем испарения различных металлов, и поэтому молекулы исследуемых газов представляли собой атомы этих металлов. Такие эксперименты позволили проверить предсказания молекулярно-кинетической теории, которые она даёт для случая газов, молекулы которых можно рассматривать как материальные точки (т.е. для одноатомных газов).

Схема опыта Дюнуайе с молекулярными пучками показана на рис. Стеклянный сосуд, материал которого выбирался таким, чтобы обеспечивать высокий вакуум, был разделён на три отделения 1, 2 и 3 двумя перегородками с диафрагмами 4. В отделении 1 находился газ, в качестве которого в данном эксперименте были использованы пары натрия, полученные при его нагревании. Молекулы этого газа могли свободно пролетать через отверстия в диафрагмах, коллимирующих молекулярный пучок 5, то есть позволяющие ему проходить только в пределах малого телесного угла. В отделениях 2 и 3 был создан сверхвысокий вакуум, такой, чтобы атомы натрия могли пролетать их без столкновений с молекулами воздуха.

Нерассеянный молекулярный пучок оставлял на торцевой стенке сосуда след 6. Но даже в случае сверхвысокого вакуума имело место рассеяние молекулярного пучка на краях диафрагм 4. Поэтому на торцевой стенке сосуда имелась область «полутени» 7, в которой оставляли следы частицы, претерпевшие рассеяние. По мере ухудшения вакуума в отделении 3 область 7 увеличивалась. По величине размытости следа рассеянных атомов натрия можно было оценить длину их свободного пробега. Такие оценки были проведены Максом Борном на основании результатов опытов, аналогичных опыту Дюнуайе.

Одними из самых знаменитых опытов с молекулярными пучками были эксперименты Штерна , в которых впервые удалось осуществить прямые измерения молекулярных скоростей. Наиболее известная схема опыта Штерна показана на рис. Платиновая нить 1, на которую была нанесена капля серебра, находилась на оси двух коаксиальных цилиндров 2 и 3, причём в цилиндре 2 имелась щель, параллельная его оси. Цилиндры могли вращаться вокруг своей оси. В опытах Штерна угловая скорость их вращения составляла 2...3 тысячи оборотов в минуту.

При пропускании через платиновую нить электрического тока она разогревалась до максимальной температуры порядка 1200 o С. В результате чего серебро начинало испаряться, и его атомы пролетали через щель 4 цилиндра 2, затем оседали на поверхности цилиндра 3, оставляя на нём след 5. Для невращающихся цилиндров атомы серебра, двигаясь прямолинейно, более-менее равномерно оседали на поверхности внешнего цилиндра, внутри сектора, соответствующего прямолинейному их распространению. Вращение цилиндров приводило к искривлению траектории молекул в системе отсчёта, связанной с цилиндрами и, как следствие, к изменению положения атомов серебра, осевших на внешний цилиндр.

Анализируя плотность осевших молекул, можно было оценить характеристики распределения молекул по скоростям, в частности, максимальную и минимальную скорости, соответствующие краям следа, а также найти наиболее вероятную скорость, соответствующую максимуму плотности осевших молекул.

При температуре нити 1200 o С среднее значение скорости атомов серебра, полученное после обработки результатов опытов Штерна, оказалось близким к 600 м/с, что вполне соответствует значению средней квадратичной скорости, вычисленному по формуле
.

Термометр представляет собой специальный прибор, предназначенный для измерений текущей температуры конкретной среды при контакте с ней.

В зависимости от вида и конструкции, он позволяет определить температурный режим воздуха, человеческого тела, почвы, воды и так далее.

Современные термометры подразделяются на несколько видов. Градация приборов в зависимости от сферы применения выглядит так:

  • бытовые;
  • технические;
  • исследовательские;
  • метеорологические и другие.

Также термометры бывают:

  • механические;
  • жидкостные;
  • электронные;
  • термоэлектрические;
  • инфракрасные;
  • газовые.

Каждый из названных приборов имеет собственную конструкцию, отличается принципом действия и областью применения.

Принцип работы

Жидкостный термометр

В основе жидкостного термометра лежит эффект, известный как расширение жидкостных сред при нагревании. Чаще всего в подобных приборах используется спирт либо ртуть. Хотя от последней планомерно отказываются в виду повышенной токсичности этого вещества. И все же, данный процесс так до конца не завершен, так как ртуть обеспечивает лучшую точность измерений, расширяясь по линейному принципу.

В метеорологии чаще применяют приборы, наполненные спиртом. Объясняется это свойствами ртути: при температуре в +38 градусов и выше она начинает густеть. В свою очередь, спиртовые термометры позволяют оценивать температурный режим конкретный среды, нагретой 600 градусов. Ошибка измерений не превышает доли одного градуса.

Механический термометр

Механические термометры бывают биметаллическими или делатометрическими (стержневые, жезловые). Принцип действия таких приборов основан на способности металлических тел расширяться при нагреве. Они отличаются высокой надежностью и точностью. Себестоимость производства механических термометров относительно низка.

Данные приборы применяются в основном в специфическом оборудовании: сигнализациях, системах автоматического контроля температуры.

Газовый термометр

Принцип действия термометра основан на тех же свойствах, что и описанных выше приборов. За исключением того, что в данном случае применяется инертный газ. По сути, такой термометр представляет собой аналог манометра, который служит для измерения давления. Газовые приборы применяются для измерения высоко- и низкотемпературных сред (диапазон составляет -271 - +1000 градусов). Они обеспечивают относительно низкую точность, из-за чего от них отказываются при лабораторных измерениях.

Электронный термометр

Его еще называют термометр сопротивления. Принцип действия этого прибора основан на изменение свойств полупроводника, встроенного в конструкцию устройства, при повышении или понижении температуры. Зависимость у обоих показателей линейная. То есть, при повышении температуры растет сопротивление полупроводника, и наоборот. Уровень последнего напрямую зависит от типа металла, использованного при изготовлении прибора: платина «работает» при -200 - +750 градусов, медь при -50 - +180 градусов. Электрические термометры используются редко, так как при производстве очень сложно градуировать шкалу.

Инфракрасный термометр

Также известен как пирометр. Он представляет собой бесконтактный прибор. Пирометр работает с температурами от -100 до +1000 градусов. Его принцип действия основан на измерении абсолютного значения энергии, которую излучает конкретный объект. Максимальная дальность, на которой термометр способен оценивать показатели температуры, зависит от его оптической разрешения, типа прицельного устройства и других параметров. Пирометры отличаются повышенной безопасностью и точностью измерения.

Термоэлектрический термометр

Действие термоэлектрического термометра основано на эффекте Зеебека, посредством которого оценивается разница потенциалов при контакте двух полупроводников, в результате чего образуется электрический ток. Температурный диапазон измерений составляет -100 - +2000 грудусов.

Существует немало разновидностей термометров. У каждого вида свои особенности и преимущества. Одним из наиболее востребованных измерителей является газовый термометр. Этот прибор отличается своей практичностью и долговечностью в эксплуатации. Изготавливаются эти приборы преимущественно из стекла или кварца, поэтому температура, которую он измеряет, должна быть низкой либо не слишком высокой. Современные модели отличаются от своих предшественников, но принципиальных изменений в работе новых приборов нет.

Особенности

Газовый термометр - это аналог манометра (измеритель давления). Зачастую используют измерители постоянного объема. В таких приборах температура газа меняется в зависимости от давления. Предел таким термометром составляет 1 300 К. Представленные виды термометра отличаются широким спросом. Тем более что на современном рынке представлены новые, усовершенствованные модели.

Принцип работы газового термометра идентичен жидкостному измерителю и основан на эффекте расширения жидкости при нагреве, только в качестве рабочего вещества здесь используется инертный газ.

Преимущества

Прибор позволяет измерять температуру в границах от 270 и до 1 000 градусов. Также стоит отметить высокую точность работы прибора. Газовый термометр имеет сильную сторону - надежность. По стоимости приборы довольно демократичные, но цена будет зависеть от производителя и качества работы устройства. При покупке прибора лучше не экономить и приобрести действительно качественный вариант, который будет точен в работе и прослужит максимально долго и эффективно.

Сфера применения

Газовый измеритель служит для определения температуры веществ. Может использоваться в специализированных лабораториях. Наиболее точный результат показывается, когда веществом выступает гелий или водород. Также данным видом термометров пользуются, чтобы измерить работу других устройств.

Нередко газовые термометры постоянного объема применяются для вириального коэффициента. Данный вид термометра может быть использован и для относительного измерения при помощи сдвоенного прибора.

Газовый термометр в основном используется для измерения температурных показателей определенных веществ. Этот прибор широко востребован в отрасли физики и химии. При использовании качественного газового термометра гарантирована высокая точность показателей. Этот вид измерителя температуры очень прост в использовании.

Манометрические газовые термометры позволяют измерять температуру от -150 до +600°С. В качестве рабочего вещества в газовых термометрах используется азот. Перед заполнением всей термосистемы термометра азотом термосистема и газ должны быть хорошо просушены. Длина соединительного капилляра этих термометров

При постоянном объеме газа зависимость его давления от температуры определяется выражением

где давление газа при температуре термический коэффициент давления газа, (для идеального газа а для азота

При изменении температуры газа в термобаллоне термометра от 4 до будет изменяться и давление газа в соответствии с выражением

где давление газа при температуре, соответствующей началу и концу шкалы термометра.

Вычитая и прибавляя к правой части уравнения (3-2-2) значение после несложных преобразований получаем:

Из этого выражения видно, что размер рабочего давления в термосистеме газового термометра прямо пропорционален значению начального давления и диапазону измерения прибора. Следует отметить, что при повышении температуры термобаллона термометра объем термосистемы его увеличивается в основном за счет расширения термобаллона и увеличения объема внутренней полости манометрической пружины. При увеличении температуры газа, а вместе с тем и давления его происходит частичное перетекание газа из термобаллона в капилляр и манометрическую пружину. При понижении температуры газа в термобаллоне будет

происходить обратный процесс. Вследствие этого при измерении температуры газовым термометром постоянство объема газа в термосистеме не сохраняется. Поэтому зависимость между давлением газа в термосистеме и его температурой незначительно отклоняется от линейной и действительное давление газа в термосистеме при температуре будет меньше подсчитанного по формуле (3-2-2). Однако эта нелинейность зависимости между не играет существенной роли и шкала газового термометра получается практически равномерной.

Для увеличения рабочего давления (3-2-3) термосистему газового термометра заполняют азотом под некоторым начальным давлением в зависимости от диапазона измерения температуры [с диапазоном измерения начальное давление а с диапазоном измерения Поэтому колебания атмосферного давления на показаниях газового термометра не сказываются.

Для уменьшения изменения показаний газового термометра, вызываемого отклонением температуры окружающего воздуха от устанавливают термобиметаллический компенсатор в тягу передаточного механизма (рис. 3-2-1, а и 3-2-3), а также стремятся уменьшить отношение внутреннего объема пружины и капилляра к объему термобаллона. Это достигается увеличением объема, а следовательно, и размеров термобаллона. Например, при длине капилляра от 1,6 до длина корпуса термобаллона термометра выполняется равной а при длине капилляра до Диаметр термобаллона в том и другом случае равен Ввиду больших размеров термобаллона газовые термометры не везде могут быть применены.