Как находить протоны нейтроны и электроны ионы. Структура атома. Энергетические уровни атома. Протоны, нейтроны, электроны

Размеры и массы атомов малы. Радиус атомов составляет 10 -10 м, а радиус ядра – 10 -15 м. Масса атома определяется делением массы одного моль атомов элемента на число атомов в 1 моль (N A = 6,02·10 23 моль -1). Масса атомов изменяется в пределах 10 -27 ~ 10 -25 кг. Обычно массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 массы атома изотопа углерода 12 С.

Основными характеристиками атома являются заряд его ядра (Z) и массовое число (А). Число электронов в атоме равно заряду его ядра. Свойства атомов определяются зарядом их ядер, числом электронов и их состоянием в атоме.

Основные свойства и строение ядра (теория состава атомных ядер)

1. Ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов.

2.Число протонов в ядре определяет значение его положительного заряда (Z). Z - порядковый номер химического элемента в периодической системе Менделеева.

3. Суммарное число протонов и нейтронов - значение его массы, так как масса атома в основном сосредоточена в ядре (99, 97% массы атома). Ядерные частицы - протоны и нейтроны - объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Общее число нуклонов соответствует - массовому числу, т.е. округленной до целого числа его атомной массе А.

Ядра с одинаковыми Z , но различными А называются изотопами . Ядра, которые при одинаковом А имеют различные Z , называются изобарами . Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов

4. Число нейтронов в ядре N может быть найдено по разности между массовым числом (А ) и порядковым номером (Z ):

5. Размер ядра характеризуется радиусом ядра , имеющим условный смысл ввиду размытости границы ядра.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если W св- величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная

называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.

Удельной энергией связи ядра w свназывается энергия связи, приходящаяся на один нуклон: w св= . Величина w свсоставляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А = const).

Ядерные силы

1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы , не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 мназывается радиусом действия ядерных сил .

3. Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов - протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах . Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития - .

4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел (А). Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

Радиоактивность, g -излучение, a и b - распад

1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц, ядер или жесткого рентгеновского излучения. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

2. Обычно все типы радиоактивности сопровождаются испусканием гамма-излучения - жесткого, коротковолнового электроволнового излучения. Гамма-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским ; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием g-фотона.

3. Альфа-распадом называется испускание ядрами некоторых химических элементов a - частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А >200 и зарядами ядер Z >82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов, т.е. образуется атом элемента, смещенного в таблице периодической системы элементов Д.И. Менделеева (ПСЭ) на две клеточки влево от исходного радиоактивного элемента с массовым числом меньшим не 4 единицы (правило Содди – Фаянса):

4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват .

b- распад происходит преимущественно у сравнительно богатых нейтронами ядер. При этом нейтрон ядра распадается на протон, электрон и антинейтрино () с нулевым зарядом и массой.

При b- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд увеличивается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку вправо от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

b+- распад происходит преимущественно у относительно богатых протонами ядер. При этом протон ядра распадается на нейтрон, позитрон и нейтрино ().

.

При b+- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд уменьшается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку влево от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

5. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b±-захвата сопровождается характеристическим рентгеновским излучением.

6. b--распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.

7. g- излучение: при возбуждении ядро атома испускает электромагнитное излучение с малой длиной волны и высокой частотой, обладающее большой жесткостью и проникающей способностью, чем рентгеновское излучение. В результате энергия ядра уменьшается, а массовое число и заряд ядра остаются не низменными. Поэтому превращение химического элемента в другой не наблюдается, а ядро атома переходит в менее возбужденное состояние.


Введение

Существующая в настоящее время теория строения атома не дает ответа на многие вопросы, возникающие при проведении различных практических и экспериментальных работ. В частности, до сих пор не определена физическая сущность электрического сопротивления. Поиск высокотемпературной сверхпроводимости может быть успешным только если знать суть электрического сопротивления. Зная строение атома, можно понять суть электрического сопротивления. Рассмотрим строение атома с учетом известных свойств зарядов и магнитных полей. Наиболее близка к реальности и отвечает экспериментальным данным планетарная модель атома, предложенная Резерфордом. Однако эта модель соответствует только атому водорода.


ГЛАВА ПЕРВАЯ

ПРОТОН И ЭЛЕКТРОН

1. ВОДОРОД

Водород является наименьшим из атомов, поэтому его атом должен содержать стабильную основу как атома водорода, так и остальных атомов. Атом водорода — протон и электрон, при этом электрон вращается вокруг протона. Считается, что заряды электрона и протона — единичные заряды, т. е. минимальные. Представление об электроне как о вихревом кольце с переменным радиусом было введено В. Ф. Миткевичем (Л. 1). Последующие работы Ву и некоторых других физиков показали, что электрон ведет себя подобно вращающемуся вихревому кольцу, спин которого направлен вдоль оси его движения, т. е. то, что электрон — вихревое кольцо, было подтверждено экспериментально. В состоянии покоя электрон, вращаясь вокруг своей оси, магнитных полей не создает. Только при движении электрон образует магнитные силовые линии.

Если заряд протона распределен по поверхности, то, вращаясь вместе с протоном, он будет вращаться вокруг только своей собственной оси. В этом случае, как и электрон, заряд протона не будет образовывать магнитное поле.

Экспериментально установлено, что протон имеет магнитное поле. Для того чтобы протон имел магнитное поле, его заряд должен быть в виде пятна на его поверхности. В этом случае при вращении протона его заряд будет двигаться по окружности, т. е. иметь линейную скорость, что необходимо для получения магнитного поля протона.

Кроме электрона существует и позитрон, отличающийся от электрона только тем, что заряд у него положительный, т. е. заряд позитрона равен заряду протона и по знаку, и по величине. Иными словами, положительный заряд протона есть позитрон, но позитрон — античастица электрона и, следовательно, — вихревое кольцо, которое не может растекаться по всей поверхности протона. Таким образом, заряд протона — позитрон.

При движении электрона, имеющего отрицательный заряд, позитрон протона под действием кулоновских сил должен находиться на поверхности протона на минимальном расстоянии от электрона (Рис. 1). Таким образом, образуется пара противоположных зарядов, связанных между собой максимальной кулоновской силой. Именно потому, что заряд протона — позитрон, его заряд равен электрону по абсолютной величине. Когда весь заряд протона взаимодействует с зарядом электрона, то и нет «лишнего» заряда протона, который бы создавал электрические отталкивающие силы между протонами.

При движении электрона вокруг протона в направлении, указанном на рис. 1, положительный заряд двигается синхронно с ним благодаря кулоновской силе. Движущиеся заряды образуют вокруг себя магнитные поля (Рис. 1). При этом вокруг электрона образуется магнитное поле против часовой стрелки, а вокруг позитрона — магнитное поле по часовой стрелке. В результате между зарядами образуется суммарное поле от двух зарядов, которое препятствует «падению» электрона на протон.

На всех рисунках протоны и нейтроны изображены в виде шаров для упрощения изображения. В действительности они должны быть в виде тороидальных вихревых образований эфира (Л. 3).

Таким образом, атом водорода имеет вид согласно рис. 2 а ). Форма магнитного поля у атома соответствует торообразному магниту с намагниченностью по оси вращения зарядов (Рис. 2 б ).

Еще в 1820 г. Ампер открыл взаимодействие токов — притяжение параллельных проводников с током, текущим в одном направлении. Позднее экспериментально определили, что одноимённые электрические заряды, двигаясь в одном направлении, притягиваются друг к другу (Л. 2).

О том, что заряды должны сближаться, т. е. притягиваться друг к другу, свидетельствует и пинч-эффект. Пинч-эффект — это эффект самостягивания разряда, свойство электрического токового канала в сжимаемой проводящей среде уменьшать своё сечение под действием собственного, порождаемого самим током, магнитного поля (Л. 4).

Так как электрический ток — всякое упорядоченное движение электрических зарядов в пространстве, то траектории электронов и позитронов протонов — это токовые каналы, способные сближаться под действием магнитного поля, порождаемого самими зарядами.

Следовательно, при соединении двух атомов водорода в молекулу одноимённые заряды объединятся в пары и будут продолжать вращение в том же направлении, но уже между протонами, что приведёт к объединению их полей.

Сближение электронов и протонов происходит до момента, когда сила отталкивания одноимённых зарядов станет равной силе, стягивающей заряды от двойного магнитного поля.

На рис. 3 а), б), и в) показано взаимодействие зарядов электрона и протона атомов водорода при соединении их в молекулу водорода.

На рис. 4 изображена молекула водорода с магнитными силовыми линиями, образованными генераторами полей двух атомов водорода. Т. е. молекула водорода имеет один сдвоенный генератор поля и общий магнитный поток, больший в 2 раза.

Мы рассмотрели, как происходит соединение водорода в молекулу, но молекула водорода с другими элементами в реакцию не вступает даже в смеси с кислородом.

Теперь рассмотрим, как происходит разделение молекулы водорода на атомы (Рис. 5). При взаимодействии молекулы водорода с электромагнитной волной электрон приобретает дополнительную энергию, и это выводит электроны на орбитальные траектории (Рис. 5 г ).

Сегодня известны сверхпроводники, которые имеют нулевое электрическое сопротивление. Эти проводники состоят из атомов и могут быть сверхпроводниками только в том случае, если их атомы — сверхпроводники, т. е. и протон тоже. Давно известна левитация сверхпроводника над постоянным магнитом, обусловленная наведением постоянным магнитом в нем тока, магнитное поле которого направлено навстречу полю постоянного магнита. При снятии внешнего поля со сверхпроводника ток в нём исчезает. Взаимодействие протонов с электромагнитной волной приводит к тому, что на их поверхностях наводятся вихревые токи. Так как протоны расположены рядом друг с другом, вихревые токи направляют магнитные поля навстречу друг другу, что увеличивает токи и их поля до разрыва молекулы водорода на атомы (Рис. 5 г ).

Выход электронов на орбитальные траектории и возникновение токов, разрывающих молекулу, происходят одновременно. При отлёте атомов водорода друг от друга вихревые токи исчезают, а электроны остаются на орбитальных траекториях.

Таким образом, на основе известных физических эффектов мы получили модель атома водорода. При этом:

1. Положительные и отрицательные заряды в атоме служат для получения силовых линий магнитных полей, которые, как известно из классической физики, образуются только при движении зарядов. Силовые линии магнитных полей и определяют все внутриатомные, межатомные и молекулярные связи.

2. Весь положительный заряд протона — позитрон — взаимодействует с зарядом электрона, создаёт максимальную кулоновскую силу притяжения для электрона, а равенство зарядов по абсолютной величине исключает у протона наличие отталкивающих сил для соседних протонов.

3. Практически атом водорода представляет собой протонно-электронный магнитный генератор (ПЭМГ), который работает только тогда, когда протон и электрон вместе, т. е. протонно-электронная пара должна быть всегда вместе.

4. При образовании молекулы водорода электроны соединяются в пару и вращаются вместе между атомами, создавая общее магнитное поле, которое удерживает их в паре. Позитроны протонов также соединяются в пару под действием своих магнитных полей и стягивают протоны, образуя молекулу водорода или любую другую молекулу. Соединённые в пару положительные заряды являются главной определяющей силой в молекулярной связи, т. к. позитроны связаны с протонами непосредственно и неотделимы от протонов.

5. Молекулярные связи всех элементов происходят аналогичным образом. Соединение атомов в молекулы других элементов обеспечивается валентными протонами со своими электронами, т. е. валентные электроны участвуют как в соединении атомов в молекулы, так и в разрыве молекулярных связей. Таким образом, каждое соединение атомов в молекулу обеспечивается по одной валентной паре протона с электроном (ВППЭ) от каждого атома на одну молекулярную связь. ВППЭ всегда состоят из протона и электрона.

6. При разрыве молекулярной связи главную роль играет электрон, т. к., выходя на орбитальную траекторию вокруг своего протона, он выдёргивает позитрон протона из пары, находящейся между протонами, на «экватор» протона, обеспечивая этим разрыв молекулярной связи.

7. При образовании молекулы водорода и молекул других элементов образуется двойной ПЭМГ.

Название «атом» с греческого переводится как «неделимый». Все вокруг нас - твердые вещества, жидкости и воздух - построено из миллиардов этих частиц.

Появление версии об атоме

Впервые об атомах стало известно в V столетии до нашей эры, когда греческий философ Демокрит предположил, что материя состоит из движущихся крошечных частичек. Но тогда не было возможности проверить версию их существования. И хотя никто не мог увидеть эти частицы, идея обсуждалась, ведь только так ученые могли объяснить процессы, происходящие в реальном мире. Поэтому они верили в существование микрочастиц задолго до того времени, когда смогли доказать этот факт.

Только в XIX в. они стали анализироваться как мельчайшие составляющие химических элементов, имеющие конкретные свойства атомов — способность вступать в соединения с другими в строго назначенном количестве. Вначале XX века считалось, что атомы - минимальные частички материи, пока не было доказано, что они состоят из еще меньших единиц.

Из чего состоит химический элемент?

Атом химического элемента - микроскопический строительный кирпичик материи. Определяющим признаком этой микрочастицы стала молекулярная масса атома. Только открытие периодического закона Менделеева обосновало, что их виды представляют собой разнообразные формы единой материи. Они настолько малы, что их невозможно увидеть, применяя обычные микроскопы, только самые мощные электронные приборы. Для сравнения, волосок на руке человека в миллион раз шире.

Электронная структура атома имеет ядро, состоящее из нейтронов и протонов, а также электронов, которые совершают обороты вокруг центра на постоянных орбитах, как планеты вокруг своих звезд. Все они скреплены электромагнитной силой, одной из четырех главных во вселенной. Нейтроны - это частички с нейтральным зарядом, протоны наделены положительным, а электроны - отрицательным. Последние притягиваются к положительно заряженным протонам, поэтому им свойственно оставаться на орбите.

Структура атома

В центральной части имеется ядро, заполняющее минимальную часть всего атома. Но исследования показывают, что почти вся масса (99.9%) расположена именно в нем. Каждый атом содержит протоны, нейтроны, электроны. Число вращающихся электронов в нем равняется положительному центральному заряду. Частицы с одинаковым зарядом ядра Z, но различными атомной массой А и числом нейтронов в ядре N именуются изотопами, а с одинаковой А и разными Z и N - изобарами. Электрон — минимальная частица вещества с отрицательным электрическим зарядом е=1,6·10-19 кулона. Заряд иона определяет количество утраченных или прибавленных электронов. Процесс метаморфозы нейтрального атома в заряженный ион именуется ионизацией.

Новая версия модели атома

Физики открыли на сегодняшний день множество других элементарных частичек. Электронная структура атома имеет новую версию.

Считается, что протоны и нейтроны, какими бы маленькими они не были, состоят из наименьших частичек, которые называются - кварки. Они составляют новую модель построения атома. Как раньше ученые собирали доказательства для существования предыдущей модели, так и сегодня пытаются доказать существование кварков.

РТМ - прибор будущего

Современные ученые могут увидеть на мониторе компьютера атомные частички вещества, а также двигать их по поверхности, используя специальный инструмент, который носит название растровый туннельный микроскоп (РТМ).

Это компьютеризированный инструмент с наконечником, который очень осторожно движется возле поверхности материала. Когда наконечник движется, электроны перемещаются сквозь зазор между наконечником и поверхностью. Хотя материал выглядит совершенно гладким, на самом деле он неровный на атомном уровне. Компьютер делает карту поверхности вещества, создавая образ его частичек, и ученые, таким образом, могут увидеть свойства атома.

Радиоактивные частицы

Отрицательно заряженные ионы кружатся вокруг ядра на достаточно большом расстоянии. Структура атома такая, что целый он действительно нейтральный и не имеет электрического заряда, потому что все его частицы (протоны, нейтроны, электроны) находятся в балансе.

Радиоактивный атом - это элемент, который можно легко расщепить. Центр его состоит из множества протонов и нейтронов. Исключение являет собой только схема атома водорода, который имеет один единственный протон. Ядро окружает облако электронов, именно их притяжение заставляет вращаться вокруг центра. Протоны одинаковым зарядом отталкивают друг друга.

Это не проблема для большинства небольших частиц, у которых их несколько. Но некоторые из них нестабильны, особенно это касается крупных по размеру, таких как уран, который имеет 92 протона. Иногда его центр не выдерживает такой нагрузки. Радиоактивным они называются из-за того, что выбрасывают несколько частиц из своего ядра. После того, как нестабильное ядро избавилось от протонов, оставшиеся образовывают новое дочернее. Оно может быть стабильным в зависимости от количества протонов в новом ядре, а может делиться дальше. Этот процесс длится до тех пор, пока не останется стабильное дочернее ядро.

Свойства атомов

Физико-химические свойства атома закономерно изменяются от одного элемента к другому. Они определяются следующими основными параметрами.

Атомная масса. Так как основное место микрочастицы занимают протоны и нейтроны, то сумма их обусловливает число, которую выражают в атомных единицах массы (а.е.м.) Формула: A = Z + N.

Атомный радиус. Радиус находится в зависимости от расположения элемента в системе Менделеева, химической связи, количества атомов-соседей и квантовомеханического действия. Радиус ядра в сто тысяч раз меньше радиуса самого элемента. Структура атома может лишаться электронов и превращаться в положительный ион или добавлять электроны, и становиться отрицательным ионом.

В Менделеева любой химический элемент занимает свое установленное место. В таблице размер атома возрастает при перемещении сверху вниз и убавляется при перемещении слева направо. Следуя из этого, наименьший элемент — это гелий, а наибольший — цезий.

Валентность. Наружная электронная оболочка атома именуется валентной, а электроны в ней получили соответственное название - валентные электроны. Их количество устанавливает то, как атом соединяется с остальными с помощью химической связи. Способом создания последней микрочастицы пытаются наполнить свои наружные валентные оболочки.

Гравитация, притяжение - это сила, которая держит планеты на орбите, из-за нее выпущенные из рук предметы падают на пол. Человек больше замечает гравитацию, но электромагнитное действие во много раз мощнее. Сила, которая притягивает (или отталкивает) заряженные частицы в атоме, в 1000 000 000 000 000 000 000 000 000 000 000 раз мощнее, чем гравитация в нем. Но в центре ядра существует еще более могучая сила, способная удерживать протоны и нейтроны вместе.

Реакции в ядрах создают энергию как в ядерных реакторах, где атомы расщепляются. Чем тяжелее элемент, тем из большего количеств частиц построены его атомы. Если сложить общее количество протонов и нейтронов в элементе, узнаем его массу. Например, Уран, самый тяжелый элемент, имеющийся в природе, имеет атомную массу 235 или 238.

Деления атома на уровни

Атома - это величина пространства вокруг ядра, где в движении находится электрон. Всего существует 7 орбиталей, соответствующих числу периодов в таблице Менделеева. Чем более отдаленное расположение электрона от ядра, тем более значительным резервом энергии он владеет. Номер периода указывает на число вокруг его ядра. Например, Калий — элемент 4 периода, значит, он имеет 4 энергетические уровни атома. Номер химического элемента отвечает его заряду и числу электронов вокруг ядра.

Атом - источник энергии

Наверное, самая знаменитая научная формула открыта немецким физиком Эйнштейном. Она утверждает, что масса есть не что иное, как форма энергии. Исходя из этой теории, можно превратить материю в энергию и рассчитать по формуле, сколько ее можно получить. Первым практическим результатом такого превращения стали атомные бомбы, которые сначала были испытаны в пустыне Лос-Аламос (США), а затем взорвались над японскими городами. И хотя только седьмая часть взрывчатого вещества превратилась в энергию, разрушающая сила атомной бомбы была ужасной.

Для того чтобы ядро освободило свою энергию, оно должно разрушится. Чтобы расщепить его, необходимо подействовать нейтроном снаружи. Тогда ядро распадается на два других, более легких, обеспечивая при этом огромный выброс энергии. Распад приводит к освобождению других нейтронов, а они продолжают расщеплять другие ядра. Процесс превращается в цепную реакцию, в результате создавая огромное количество энергии.

Плюсы и минусы использования ядерной реакции в наше время

Разрушающую силу, которая освобождается при превращении материи, человечество пытается приручить на атомных станциях. Здесь ядерная реакция происходит не в виде взрыва, а как постепенная отдача тепла.

Производство атомной энергии имеет свои плюсы и минусы. По мнению ученых, чтобы поддерживать нашу цивилизацию на высоком уровне, необходимо использовать этот огромный источник энергии. Но следует учитывать и то, что даже самые современные разработки не могут гарантировать полной безопасности атомных электростанций. Кроме того, полученные в процессе производства энергии при ненадлежащем хранении могут сказываться на наших потомках на протяжении десятков тысяч лет.

После аварии на Чернобыльской АЭС все больше людей считает производство атомной энергии очень опасным для человечества. Единственной безопасной электростанцией такого рода является Солнце со своей ядерной энергией огромной мощности. Ученые разрабатывают всевозможные модели солнечных батарей, и, возможно, в недалеком будущем человечество сможет обеспечить себя безопасной атомной энергией.

Поговорим о том, как найти протоны, нейтроны и электроны. В атоме существует три вида элементарных частиц, причем у каждой есть свой элементарный заряд, масса.

Строение ядра

Для того чтобы понять, как найти протоны, нейтроны и электроны, представим Оно является основной частью атома. Внутри ядра располагаются протоны и нейтроны, именуемые нуклонами. Внутри ядра эти частицы могут переходить друг в друга.

Например, чтобы найти протоны, нейтроны и электроны в необходимо знать его порядковый номер. Если учесть, что именно этот элемент возглавляет периодическую систему, то в его ядре содержится один протон.

Диаметр атомного ядра составляет десятитысячную долю всего размера атома. В нем сосредоточена основная масса всего атома. По массе ядро превышает в тысячи раз сумму всех электронов, имеющихся в атоме.

Характеристика частиц

Рассмотрим, как найти протоны, нейтроны и электроны в атоме, и узнаем об их особенностях. Протон - это которая соответствует ядру атома водорода. Его масса превышает электрон в 1836 раз. Для определения единицы электричества, проходящего через проводник с заданным поперечным сечением, используют электрический заряд.

У каждого атома в ядре располагается определенное количество протонов. Оно является постоянной величиной, характеризует химические и физические свойства данного элемента.

Как найти протоны, нейтроны и электроны в атоме углерода? Порядковый номер данного химического элемента 6, следовательно, в ядре содержится шесть протонов. Согласно планетарной вокруг ядра по орбитам движется шесть электронов. Для определения количество нейтронов из значения углерода (12) вычитаем количество протонов (6), получаем шесть нейтронов.

Для атома железа число протонов соответствует 26, то есть этот элемент имеет 26-й порядковый номер в таблице Менделеева.

Нейтрон является электрически нейтральной частицей, нестабильной в свободном состоянии. Нейтрон способен самопроизвольно превращаться в положительно заряженный протон, испуская при этом антинейтрино и электрон. Средний период его полураспада составляет 12 минут. Массовое число - это суммарное значение количества протонов и нейтронов внутри ядра атома. Попробуем выяснить, как найти протоны, нейтроны и электроны в ионе? Если атом во время химического взаимодействия с другим элементом приобретает положительную степень окисления, то число протонов и нейтронов в нем не изменяется, меньше становится только электронов.

Заключение

Существовало несколько теорий, касающихся строения атома, но ни одна из них не была жизнеспособной. До версии, созданной Резерфордом, не было детального пояснения о расположении внутри ядра протонов и нейтронов, а также о вращении по круговым орбитам электронов. После появления теории планетарного строения атома у исследователей появилась возможность не только определять количество элементарных частиц в атоме, но и предсказывать физические и химические свойства конкретного химического элемента.

  • Перевод

В центре каждого атома находится ядро, крохотный набор частиц под названием протоны и нейтроны. В этой статье мы изучим природу протонов и нейтронов, состоящих из частиц ещё мельче размером – кварков, глюонов и антикварков. (Глюоны, как и фотоны, являются античастицами сами себе). Кварки и глюоны, насколько нам известно, могут быть по-настоящему элементарными (неделимыми и не состоящими из чего-то мельче размером). Но к ним позже.

Как ни удивительно, у протонов и нейтронов масса почти одинаковая – с точностью до процента:

  • 0,93827 ГэВ/с 2 у протона,
  • 0,93957 ГэВ/с 2 у нейтрона.
Это ключ к их природе – они на самом деле очень похожи. Да, между ними существует одно очевидное различие: у протона положительный электрический заряд, а у нейтрона заряда нет (он нейтральный, отсюда и его название). Соответственно, электрические силы действуют на первый, но не на второй. На первый взгляд это различие кажется очень важным! Но на самом деле это не так. Во всех остальных смыслах протон с нейтроном почти близнецы. У них идентичны не только массы, но и внутреннее строение.

Поскольку они так похожи, и поскольку из этих частиц состоят ядра, протоны и нейтроны часто называют нуклонами.

Протоны идентифицировали и описали примерно в 1920 году (хотя открыты они были раньше; ядро атома водорода – это просто отдельный протон), а нейтроны нашли где-то в 1933-м. То, что протоны и нейтроны так похожи друг на друга, поняли почти сразу. Но то, что у них есть измеримый размер, сравнимый с размером ядра (примерно в 100 000 раз меньше атома по радиусу), не знали до 1954-го. То, что они состоит из кварков, антикварков и глюонов, постепенно понимали с середины 1960-х до середины 1970-х. К концу 70-х и началу 80-х наше понимание протонов, нейтронов, и того, из чего они состоят, по большей части устаканилось, и с тех пор остаётся неизменным.

Нуклоны описать гораздо труднее, чем атомы или ядра. Не сказать, что атомы в принципе простые , но по крайней мере, можно сказать, не раздумывая, что атом гелия состоит из двух электронов, находящихся на орбите вокруг крохотного ядра гелия; а ядро гелия – достаточно простая группа из двух нейтронов и двух протонов. А вот с нуклонами всё уже не так просто. Я уже писал в статье "Что такое протон, и что у него внутри? ", что атом похож на элегантный менуэт, а нуклон – на дикую вечеринку.

Сложность протона и нейтрона, судя по всему, всамделишные, и не проистекают из неполных физических знаний. У нас есть уравнения, используемые для описания кварков, антикварков и глюонов, а также сильных ядерных взаимодействий, происходящих между ними. Эти уравнения называются КХД, от "квантовая хромодинамика ". Точность уравнений можно проверять различными способами, включая измерение количества появляющихся на Большом адронном коллайдере частиц. Подставляя уравнения КХД в компьютер и запуская вычисления свойств протонов и нейтронов, и других сходных частиц (с общим названием «адроны»), мы получаем предсказания свойств этих частиц, хорошо приближающиеся к наблюдениям, сделанным в реальном мире. Поэтому у нас есть основания полагать, что уравнения КХД не врут, и что наше знание протона и нейтрона основано на верных уравнениях. Но просто иметь правильные уравнения недостаточно, ибо:

  • У простых уравнений могут оказаться очень сложные решения,
  • Иногда невозможно описать сложные решения простым способом.
Насколько мы можем судить, именно так дело обстоит с нуклонами: это сложные решения относительно простых уравнений КХД, и описать их парой слов или картинок не представляется возможным.

Из-за внутренней сложности нуклонов вам, читатель, придётся сделать выбор: как много вы хотите узнать по поводу описанной сложности? Неважно, как далеко вы зайдёте, удовлетворения это вам, скорее всего, не принесёт: чем больше вы будете узнавать, тем понятнее вам будет становиться тема, но итоговый ответ останется тем же – протон и нейтрон очень сложны. Я могу предложить вам три уровня понимания, с увеличением детализации; вы же можете остановиться после любого уровня и перейти на другие темы, или можете погружаться до последнего. По поводу каждого уровня возникают вопросы, ответы на которые я могу частично дать в следующем, но новые ответы вызывают новые вопросы. В итоге – как я делаю в профессиональных обсуждениях с коллегами и продвинутыми студентами – я могу лишь отослать вас к данным полученным в реальных экспериментах, к различным влиятельным теоретическим аргументам, и компьютерным симуляциям.

Первый уровень понимания

Из чего состоят протоны и нейтроны?

Рис. 1: чрезмерно упрощённая версия протонов, состоящих только из двух верхних кварков и одного нижнего, и нейтронов, состоящих только из двух нижних кварков и одного верхнего

Чтобы упростить дело, во многих книгах, статьях и на сайтах указано, что протоны состоят из трёх кварков (двух верхних и одно нижнего) и рисуют нечто вроде рис. 1. Нейтрон такой же, только состоящий из одного верхнего и двух нижних кварков. Это простое изображение иллюстрирует то, во что верили некоторые учёные, в основном в 1960-х. Но вскоре стало понятно, что эта точка зрения чрезмерно упрощена до такой степени, что уже не является корректной.

Из более искушённых источников информации вы узнаете, что протоны состоит из трёх кварков (двух верхних и одного нижнего), удерживаемых вместе глюонами – и там может появиться картинка, похожая на рис. 2, где глюоны нарисованы в виде пружинок или ниток, удерживающих кварки. Нейтроны такие же, только с одним верхним кварком и двумя нижними.


Рис. 2: улучшение рис. 1 за счёт акцента на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне

Не такой уж плохой способ описания нуклонов, поскольку он делает акцент на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне за счёт глюонов (точно так же, как с электромагнитным взаимодействием связан фотон, частица, из которых состоит свет). Но это тоже сбивает с толку, поскольку на самом деле не объясняет, что такое глюоны и что они делают.

Есть причины двигаться дальше и описывать вещи так, как я делал в : протон состоит из трёх кварков (двух верхних и одного нижнего), кучи глюонов и горы пар кварк-антикварк (в основном это верхние и нижние кварки, но есть и несколько странных). Все они летают туда и сюда с очень большой скоростью (приближаясь к скорости света); весь этот набор удерживается при помощи сильного ядерного взаимодействия. Я продемонстрировал это на рис. 3. Нейтроны опять такие же, но с одним верхним и двумя нижними кварками; изменивший принадлежность кварк указан стрелкой.


Рис. 3: более реалистичное, хотя всё равно неидеальное изображение протонов и нейтронов

Эти кварки, антикварки и глюоны не только бешено носятся туда-сюда, но и сталкиваются друг с другом, и превращаются друг в друга через такие процессы, как аннигиляция частиц (в которой кварк и антикварк одного типа превращаются в два глюона, или наоборот) или поглощение и испускание глюона (в котором могут столкнуться кварк и глюон и породить кварк и два глюона, или наоборот).

Что у этих трёх описаний общего:

  • Два верхних кварка и нижний кварк (плюс что-то ещё) у протона.
  • Один верхний кварк и два нижних кварка (плюс ещё что-то) у нейтрона.
  • «Ещё что-то» у нейтронов совпадает с «ещё чем-то» у протонов. То есть, у нуклонов «ещё что-то» одинаковое.
  • Небольшая разница в массе у протона и нейтрона появляется из-за разницы масс нижнего кварка и верхнего кварка.
И, поскольку:
  • у верхних кварков электрический заряд равен 2/3 e (где e – заряд протона, -e – заряд электрона),
  • у нижних кварков заряд равен -1/3e,
  • у глюонов заряд 0,
  • у любого кварка и соответствующего ему антикварка общий заряд равен 0 (к примеру, у антинижнего кварка заряд +1/3e, так что у нижнего кварка и нижнего антикварка заряд будет –1/3 e +1/3 e = 0),
Каждый рисунок относит электрический заряд протона на счёт двух верхних и одного нижнего кварка, а «ещё что-то» добавляет к заряду 0. Точно так же у нейтрона заряд нулевой благодаря одному верхнему и двум нижним кваркам:
  • общий электрический заряд протона 2/3 e + 2/3 e – 1/3 e = e,
  • общий электрический заряд нейтрона 2/3 e – 1/3 e – 1/3 e = 0.
Различаются эти описания в следующем:
  • сколько «ещё чего-то» внутри нуклона,
  • что оно там делает,
  • откуда берутся масса и энергия массы (E = mc 2 , энергия, присутствующая там, даже когда частица покоится) нуклона.
Поскольку большая часть массы атома, и, следовательно, всей обычной материи, содержится в протонах и нейтронах, последний пункт крайне важен для правильного понимания нашей природы.

Рис. 1 говорит о том, что кварки, по сути, представляют собой треть нуклона – примерно так, как протон или нейтрон представляют четверть ядра гелия или 1/12 ядра углерода. Если бы этот рисунок был правдив, кварки в нуклоне двигались бы относительно медленно (со скоростями гораздо меньшими световой) с относительно слабыми взаимодействиями, действующими между ними (хотя и при наличии некоей мощной силы, удерживающей их на месте). Масса кварка, верхнего и нижнего, составляла бы тогда порядка 0,3 ГэВ/с 2 , примерно треть массы протона. Но это простое изображение и навязываемые им идеи просто неверны.

Рис. 3. даёт совершенно другое представление о протоне, как о котле частиц, снующих в нём со скоростями, близкими к световой. Эти частицы сталкиваются друг с другом, и в этих столкновениях некоторые из них аннигилируют, а другие создаются на их месте. Глюоны не имеют массы, массы верхних кварков составляют порядка 0,004 ГэВ/с 2 , а нижних – порядка 0,008 ГэВ/с 2 - в сотни раз меньше протона. Откуда берётся энергия массы протона, вопрос сложный: часть её идёт от энергии массы кварков и антикварков, часть – от энергии движения кварков, антикварков и глюонов, а часть (возможно, положительная, возможно, отрицательная) из энергии, хранящейся в сильном ядерном взаимодействии, удерживающем кварки, антикварки и глюоны вместе.

В некотором смысле рис. 2 пытается устранить разницу между рис. 1 и рис. 3. Он упрощает рис. 3, удаляя множество пар кварк-антикварк, которые, в принципе, можно назвать эфемерными, поскольку они постоянно возникают и исчезают, и не являются необходимыми. Но она производит впечатление того, что глюоны в нуклонах являются непосредственной частью сильного ядерного взаимодействия, удерживающего протоны. И она не объясняет, откуда берётся масса протона.

У рис. 1 есть другой недостаток, кроме узких рамок протона и нейтрона. Она не объясняет некоторые свойства других адронов, к примеру, пиона и ро-мезона . Те же проблемы есть и у рис. 2.

Эти ограничения и привели к тому, что своим студентам и на моём сайте, я даю картинку с рис. 3. Но хочу предупредить, что и у неё есть множество ограничений, которые я рассмотрю позже.

Стоит отметить, что чрезвычайную сложность строения, подразумеваемая рис. 3, стоило ожидать от объекта, который удерживает вместе такая мощная сила, как сильное ядерное взаимодействие. И ещё одно: три кварка (два верхних и один нижний у протона), не являющиеся частью группы пар кварков-антикварков, часто называют «валентными кварками», а пары кварков-антикварков – «морем кварковых пар». Такой язык во многих случаях технически удобен. Но он даёт ложное впечатление того, что если бы вы смогли заглянуть внутрь протона, и посмотрели на определённый кварк, вы сразу смогли бы сказать, является ли он частью моря или валентным. Этого сделать нельзя, такого способа просто нет.

Масса протона и масса нейтрона

Поскольку массы протона и нейтрона так похожи, и поскольку протон и нейтрон отличаются только заменой верхнего кварка нижним, кажется вероятным, что их массы обеспечиваются одним и тем же способом, исходят из одного источника, и их разница заключается в небольшом отличии между верхним и нижним кварками. Но три приведённых рисунка говорят о наличии трёх очень разных взглядов на происхождение массы протона.

Рис. 1 говорит о том, что верхний и нижний кварки просто составляют по 1/3 от массы протона и нейтрона: порядка 0,313 ГэВ/с 2 , или из-за энергии, необходимой для удержания кварков в протоне. И поскольку разница между массами протона и нейтрона составляет долю процента, разница между массами верхнего и нижнего кварка тоже должна составлять долю процента.

Рис. 2 менее понятен. Какая часть массы протона существует благодаря глюонам? Но, в принципе, из рисунка следует, что большая часть массы протона всё равно происходит от массы кварков, как на рис. 1.

Рис. 3 отражает более тонкий подход к тому, как на самом деле появляется масса протона (как мы можем проверить напрямую через компьютерные вычисления протона, и не напрямую с использованием других математических методов). Он сильно отличается от идей, представленных на рис. 1 и 2, и оказывается не таким простым.

Чтобы понять, как это работает, нужно думать не в терминах массы m протона, но в терминах его энергии массы E = mc 2 , энергии, связанной с массой. Концептуально правильным вопросом будет не «откуда взялась масса протона m», после которого вы можете подсчитать E, умножив m на c 2 , а наоборот: «откуда берётся энергия массы протона E», после которого можно подсчитать массу m, разделив E на c 2 .

Полезно классифицировать взносы в энергию массы протона по трём группам:

А) Энергия массы (энергия покоя) содержащихся в нём кварков и антикварков (глюоны, безмассовые частицы, никакого вклада не делают).
Б) Энергия движения (кинетическая энергия) кварков, антикварков и глюонов.
В) Энергия взаимодействия (энергия связи или потенциальная энергия), хранящаяся в сильном ядерном взаимодействии (точнее, в глюонных полях), удерживающих протон.

Рис. 3 говорит о том, что частицы внутри протона двигаются с большой скоростью, и что в нём полно безмассовых глюонов, поэтому вклад Б) больше А). Обычно, в большинстве физических систем Б) и В) оказываются сравнимыми, при этом В) часто отрицательно. Так что энергия массы протона (и нейтрона) в основном получается из комбинации Б) и В), а А) вносит малую долю. Поэтому массы протона и нейтрона появляются в основном не из-за масс содержащихся в них частиц, а из-за энергий движения этих частиц и энергии их взаимодействия, связанной с глюонными полями, порождающими силы, удерживающие протон. В большинстве других знакомых нам систем баланс энергий распределён по-другому. К примеру, в атомах и в Солнечной системе доминирует А), а Б) и В) получаются гораздо меньше, и сравнимы по величине.

Подводя итоги, укажем, что:

  • Рис. 1 предполагает, что энергия массы протона происходит из вклада А).
  • Рис. 2 предполагает, что важны оба вклада А) и В), и немного своей доли вносит Б).
  • Рис. 3 предполагает, что важны Б) и В), а вклад А) оказывается незначительным.
Нам известно, что верен рис. 3. Для его проверки мы можем провести компьютерные симуляции, и, что более важно, благодаря различным убедительным теоретическим аргументам, мы знаем, что если бы массы верхнего и нижнего кварков были нулевыми (а всё остальное осталось, как есть), масса протона практически не изменилась бы. Так что, судя по всему, массы кварков не могут делать важные вклады в массу протона.

Если рис. 3 не врёт, массы кварка и антикварка очень малы. Какие они на самом деле? Масса верхнего кварка (как и антикварка) не превышает 0,005 ГэВ/с 2 , что гораздо меньше, чем 0,313 ГэВ/с 2 , который следует из рис. 1. (Массу верхнего кварка тяжело измерить, и это значение меняется из-за тонких эффектов, так что она может оказаться гораздо меньшей, чем 0,005 ГэВ/с 2). Масса нижнего кварка примерно на 0,004 ГэВ/с 2 больше массы верхнего. Это значит, что масса любого кварка или антикварка не превышает одного процента массы протона.

Обратите внимание, что это означает (противореча рис. 1), что отношение массы нижнего кварка к верхнему не приближается к единице! Масса нижнего кварка как минимум в два раза превышает массу верхнего. Причина того, что массы нейтрона и протона так похожи, не в том, что похожи массы верхнего и нижнего кварков, а в том, что массы верхнего и нижнего кварков очень малы – и разница между ними мала, по отношению к массам протона и нейтрона. Вспомните, что для превращения протона в нейтрон, вам нужно просто заменить один из его верхних кварков на нижний (рис. 3). Этой замены достаточно для того, чтобы сделать нейтрон немного тяжелее протона, и поменять его заряд с +е на 0.

Кстати, тот факт, что различные частицы внутри протона сталкиваются друг с другом, и постоянно появляются и исчезают, не влияет на обсуждаемые нами вещи – энергия сохраняется в любом столкновении. Энергия массы и энергия движения кварков и глюонов может меняться, как и энергия их взаимодействия, но общая энергия протона не меняется, хотя всё внутри него постоянно меняется. Так что масса протона остаётся постоянной, несмотря на его внутренний вихрь.

На этом моменте можно остановиться и впитать полученную информацию. Поразительно! Практически вся масса, содержащаяся в обычной материи, происходит из массы нуклонов в атомах. И большая часть этой массы происходит из хаоса, присущего протону и нейтрону – из энергии движения кварков, глюонов и антикварков в нуклонах, и из энергии работы сильных ядерных взаимодействий, удерживающих нуклон в целом состоянии. Да: наша планета, наши тела, наше дыхание являются результатом такого тихого, и, до недавнего времени, невообразимого столпотворения.