Токовая петля. Унифицированные аналоговые сигналы в системах автоматики Что такое стандарт HART

Один из интерфейсов промышленной автоматики — токовая петля 4-20мА, используется для передачи данных от измерительных преобразователей контроллерам. В интерфейсе идёт представление аналогового сигнала: 0мА — обрыв, 4мА — минимальный уровень сигнала, 20мА — максимальный уровень сигнала. Выпускается множество промышленных датчиков с интерфейсом токовой петли 4-20мА.

В статье предлагаю ознакомиться с преобразователем аналогового сигнала 0-5В (можно пересчитать и на другие диапазоны) в аналоговый сигнал 4-20мА — микросхемой xtr115.

Микросхема универсальная: к ней можно подключать резистивную нагрузку, источники напряжения 0-5В, с пересчётом и другие диапазоны, с добавлением одного операционного усилителя измерительный мост, выход микроконтроллера с аналоговым сигналом (ЦАП) или ШИМ сигналом пропущенным через фильтр.

Входной сигнал подаваемый на Iin (вывод 2) контролирует выходной ток управля транзистором Q1. Вход питания (+) линии 4-20 подключается к V+ (вывод 7), выход Io (вывод 4). Схема имеет встроенные стабилизаторы на 5В Vreg (вывод 8) и 2,5В(xtr115) или 4,096В (xtr116) Vref (вывод 1), которые можно использовать для питания внешних схем, при его использовании нужно учесть: что максимальный ток, который можно снять со стабилизатора не должен превышать 3,7мА (микросхема потребляет около 200мкА, а минимальный уровень интерфейса 4-20 — 4мА), так же весь отдаваемый ток микросхемой со всех её выводов должен вернуться на вывод Iret. Напряжение с вывода Vref можно использовать для смещения входного сигнала, поступаемого на вход Iin, для получения минимального уровня тока 4мА на интерфейсе 4-20. Ток протекающий через Iin (вывод 2) 100 кратно увеличивается протекает через Io (вывод 4), Io=100*Iin .

Рассмотрим схему включения преобразователя xtr115u с аналоговым входом 0-5В.

Основой преобразователя выступает микросхема xtr115. Транзистор Q1 должен быть мощностью не менее 0,8Вт, напряжением 40В и током 20мА, например MMBT2222A, BC817, но лучше взять что-нибудь по мощнее. Конденсатор C2 сглаживает пульсации на линии 4-20, резистор R3 ограничивает максимальный протекаемый ток, на нём может выделяться до 0,1Вт, рекомендуется типоразмер 1206. По входу конденсатор C1 выступает в роли входного фильтра. Резистор R1 ограничивает протекание входного тока на вход Iin для 5В на 160мкА, что соответствует 16мА на выходе Io, расчётное значение R1 31,25кОм. Резистор R2 номиналом в 62,5кОм устанавливает смещение 4мА на выходе Io (вывод 4), для этого с вывода источника опорного напряжения Vref на вход сигнала Iin должен протекать ток 40мкА. Протекание тока через резистор смещения R2 в 40мкА и протекание тока через резистор R1 ограниченного на 160мкА даёт на входе Iin диапазон от 40 до 200мкА, микросхема умножает это значение на 100 и на выходе Iout диапазон протекаемого тока 4-20мА.

Внимание! дополнение к схеме. Транзистора в корпусе sot23 не подходят для данной схемы, их можно применять только на малых напряжениях до 15В и наличии токоограничивающего резистора (R3). Максимальное тепловыделение на транзисторе может достигать 0.8Вт, а это уже корпуса D-PACK, при меньшем напряжении с натяжкой sot-223. На резисторе R3 может выделяться мощность около 0.1Вт, оптимальный типоразмер 1206.
Плата приведенная в статье проектировалась для знакомства с данной микросхемой и работает при напряжениях на токовом интерфейсе ниже 15В, кратковременно проверялась на 30В.

Внутреннее устройство преобразователя.

Для облегчения подбора резисторов R1 и R2 и для добавления установки/калибровки минимального и максимального значения номиналы резисторов были снижены до более распространенного номинала из таблицы E и к ним были добавлены подстроечные многооборотные резисторы.

R3 — установка нуля, подстройка 4мА на выходе схемы, когда вход Vin подключен к общему проводу. R1 — установка максимального значения, подстройка 20мА на выходе схемы, когда вход Vin подключен к VDD 5V.

Печатная плата имеет следующий вид:

Микросхема преобразователя xtr115 в корпусе SO8, транзистор в корпусе sot-23 (транзистор подобран без запаса по мощности, лучше выбрать в более большом корпусе с лучшим рассеиванием тепла). Все резисторы и конденсаторы в корпусе 0805. Резистор R2 номиналом в 30К разбит на 2: 10К и 20К. Подстроечные резисторы R1 и R3 многооборотные в корпусе 3296W. Разъём X1 выполнен в виде PLS-3R, квадратный вывод — GND, клеммник X2 — 350-021-14 имеет шаг 3,5мм.

Примеры использования интерфейса токовой петли 4-20мА xtr115:

Самое простое, что можно подключить к преобразователю — это переменный резистор (R1, на схеме с примерами выше) сопротивлением от 3,3кОм или датчик с изменяемым выходным сопротивлением.

Так же к xtr115 можно подключить выход микроконтроллера ЦАП или ШИМ через фильтр (П-образный фильтр на C1, R2, C2, на схеме выше), который выровняет ШИМ сигнал контроллера в аналоговый сигнал, что бы его можно будет подать на вход Vin преобразователя. Не стоит забывать про уровни: выходной сигнал микроконтроллера должен перекрывать весь рабочий диапазон преобразователя (4-20мА), для этого напряжение питания микроконтроллера должно быть то же 5В, как и у преобразователя, или придётся ставить дополнительные согласующие элементы.

К преобразователю так же можно подключить готовые датчики с изменяемым на выходе напряжением. Например: линейный датчик температуры LM35 (U1, см. на схеме выше), для работы которого понадобиться только резистор подтяжки R3 номиналом в 2кОм, которым можно подтянутся к встроенному в xtr115 стабилизатору напряжения 5В. Такое решение будет допустимо только для датчиков с небольшим потребляемым током, до 3,7мА, если больше они своим потреблением внесут искажения в работу интерфейса 4-20мА, для таких задач придётся использовать внешний источник питания.

Токовая петля — способ передачи информации с помощью измеряемых значений силы электрического тока. Как правило, система с использованием токовой петли включает в себя датчик (давления, температуры, газов и т.п.), передатчик, приемник и аналого-цифровой преобразователь (АЦП) или микроконтроллер (рисунок 1).

Рис. 1.

На выходе датчика формируется напряжение, пропорциональное измеряемому параметру. Передатчик (усилитель тока, управляемый напряжением) преобразует напряжение от датчика в соответствующий ток от 4 до 20 мА. На другом конце линии приемник (усилитель напряжения, управляемый током) преобразует ток 4…20 мА обратно в напряжение. Аналого-цифровой преобразователь оцифровывает выходное напряжение приемника для последующей обработки процессором или микроконтроллером.

В системах с интерфейсом токовой петли информация передается с помощью модулированного сигналом тока. В токовой петле 4…20 мА, наименьшее значение сигнала соответствует току 4 мА, а наибольшее — 20 мА. Таким образом, весь диапазон допустимых значений составляет 16 мА. В петле постоянно поддерживается ток 4 мА, поэтому при более низкой величине тока обнаруживается обрыв линии и позволяет легко диагностировать такую ситуацию.

Как правило, в системах промышленной автоматики датчики удалены на большие расстояния от центрального управляющего узла, поэтому токовая петля до сих пор не утратила свою актуальность, поскольку является наиболее помехоустойчивым аналоговым интерфейсом, особенно — по сравнению с методами передачи данных напряжением. Более полноценная система, включающая в себя вторую токовую петлю (например, для управления приводом), продемонстрирована на рисунке 2.

Рис. 2.

Опираясь на эту схему, рассмотрим решения, которые предлагает компания Maxim для ее реализации.

Операционный усилитель
в качестве преобразователя напряжение-ток

На рисунке 3 представлена простая реализация преобразователя «напряжение-ток» с использованием операционного усилителя (ОУ) MAX9943. Данный ОУ при напряжении питания ±15 В обеспечивает выходной ток более ±20 мА, а также стабилен при емкостной нагрузке до 1 нФ, что делает его весьма подходящим для использования в длинной линии передачи. Для работы в диапазоне выходного тока 0…20 мА возможно однополярное питание усилителя, поскольку MAX9943 обеспечивает размах выходного напряжения, равный напряжению питания (rail-to-rail output ).

Рис. 3.

В данной схеме зависимость между входным напряжением и током на нагрузке описывается выражением: V IN = (R2/R1) ґ R SENSE ґ I LOAD + V REF . Типовое значение нагрузочного сопротивления может составлять несколько кОм, В этом примере: R1 = 1 кОм; R2 = 10 кОм; R SENSE = 12,5 Ом; R LOAD = 600 Ом.

Для преобразования входного напряжения ±2,5 В в ток ±20 мА опорное напряжение V REF должно быть равно 0 В. Чтобы получить токовый выход 4…20 мА из входного напряжения 0…2,5 В, необходимо задать смещение для постоянного присутствия в линии тока 4 мА. При V REF = -0,25 В входное напряжение 0…2,5 В преобразуется в выходной ток 2…22 мА. Обычно разработчики выбирают немного расширенный динамический диапазон для возможности последующей программной калибровки. Зависимости входного напряжения и выходного тока показаны на рисунках 4 и 5.

Рис. 4. Зависимость I LOAD от V IN для выхода ±20 мА

Рис. 5. Зависимость I LOAD от V IN для выхода 4-20мА

MAX15500 и MAX15501 — формирователи сигнала токовой петли

Схема на рисунке 3 с использованием операционных усилителей — это простая реализация токовой петли, которая вызывает сложности при калибровке, а также большую погрешность при передаче сигналов в реальных условиях эксплуатации. На практике, для реализации преобразователя «напряжение-ток» целесообразно использовать однокристальные решения, технические параметры которых жестко описаны в документации.

Рис. 6.

Пример подобного решения — MAX15500/15501, программируемые по интерфейсу SPI формирователи аналогового токового выхода или выхода напряжения. Входное напряжение для этих преобразователей, как правило, берется с выхода внешнего ЦАП. Для MAX15500 диапазон входного напряжения 0…4,096 В, а для MAX15501 — 0…2,5 В. Программно доступны шесть режимов работы выходного каскада: ±10 В; 0…5 В; 0…10 В; ±20 мА; 0…20 мА; 4…20 мА. Микросхемы обеспечивают защиту от короткого замыкания; определение обрыва в линии передачи; защиту от перегрева и определение падения питающего напряжения ниже порогового.

MAX5661 — ЦАП с токовым выходом

Наиболее интегрированный вариант преобразователя с токовым выходом — MAX5661. Это одноканальный 16-битный ЦАП с прецизионным высоковольтным усилителем, который организует законченное решение для преобразования цифрового сигнала от процессора в программируемый токовый выход (0…20 мА или 4…20 мА) или в напряжение промышленного стандарта ±10 В.

Рис. 7.

Управление и передача данных в ЦАП осуществляется по четырехпроводному SPI-интерфейсу. В микросхеме предусмотрен выход #FAULT, с помощью которого можно диагностировать обрыв в токовой петле или короткое замыкание на выходе напряжения. Следует отметить, что MAX5661 требует использования внешнего источника опорного напряжения 4,096 В. В документации приводится список рекомендуемых ультрапрецизионных ИОН, например, MAX6341, MAX6133 или MAX6033. Для быстрого освоения всего функционала MAX5661 предлагается отладочный набор MAX5661EVCMAXQU+ с интерфейсом к ПК для управления ЦАП с помощью графического интерфейса (GUI).

MAX1452 — преобразователь сигнала датчика
в токовую петлю

До сих пор мы рассматривали решения, подходящие для преобразования сигнала от микроконтроллера или ЦАП, т.е. для передачи управляющих сигналов. Для получения токового сигнала со стороны датчика Maxim предлагает микросхему MAX1452, сочетающую в себе аналоговую часть с ОУ для формирования информационного сигнала и цифровую схему, обеспечивающую компенсацию температурного дрейфа, подстройку сдвига нуля, а также программируемый с помощью PGA коэффициент передачи. Все коэффициенты подстройки хранятся во встроенной EEPROM-памяти объемом 768 байт.

На рисунке 8 представлена схема включения MAX1452 с токовым выходом 4…20 мА и питанием от токовой петли. Для формирования тока в петле используется транзистор 2N2222A.

Рис. 8.

HART-модем DS8500

HART (Highway Addressable Remote Transducer Protocol ) — цифровой промышленный протокол передачи данных, позволяющий, как правило, осуществить настройку датчика или получить информацию о его состоянии с использованием линии, на которой организована аналоговая токовая петля. Для передачи цифровых данных используется FSK-модулированный сигнал (модуляция переключением частоты) поверх токовой петли 4…20 мА (рисунок 9). Такой способ реализации позволяет использовать протокол HART в уже существующих системах с аналоговой токовой петлей.

Рис. 9.

Для организации физического уровня HART (модуляции и демодуляции) компания Maxim предлагает микросхему HART-модема DS8500, которая позволяет осуществлять полудуплексный режим приема-передачи, при этом «1» модулируется частотой 1,2 кГц, «0» — 2,2 кГц. Функционально DS8500 состоит из демодулятора, цифрового фильтра, АЦП, модулятора и ЦАП (рисунок 10).

Рис. 10.

Подобная архитектура (с наличием цифровой фильтрации и ЦАП, который генерирует чистый синусоидальный сигнал с непрерывным по фазе переключением между частотами) обеспечивает надежный прием сигнала в условиях помех.

Заключение

Компания Maxim предлагает полный спектр решений для организации передачи данных с использованием токовой петли как от датчиков до центрального управляющего блока, так и от этого блока до исполнительных узлов. Помимо этого, для расширения функционала подобной промышленной системы в линейке Maxim присутствуют более 300 различных микросхем интерфейсов RS-485/RS-232, CAN, LIN.

Литература

1. "How to use highvoltage and highcurrent-drive opamps in 4-20 mA current-loop systems", Maurizio Gavardoni, Maxim Engineering Journal №68

2. «Аналоговая токовая петля — решения от компании Maxim», Анатолий Андрусевич, «Компоненты и технологии» №8 2009

Фундаментальные основы работы токовой петли 4..20 мА

С 1950-х годов токовая петля используется для передачи данных от измерительных преобразователей в процессе мониторинга и контроля. При низкой стоимости реализации, высокой помехоустойчивости и возможности передачи сигналов на большие расстояния, токовая петля оказалась особенно удобной для работы в промышленных условиях. Этот материал посвящен описанию базовых принципов работы токовой петли, основам проектирования, настройке.

Использование тока для передачи данных от преобразователя

Датчики промышленного исполнения часто используют токовый сигнал для передачи данных в отличие, от большинства других преобразователей, таких,например, как термопары или тензорезистивные датчики, которые используют напряжение сигнала. Несмотря на то, что преобразователи,использующие напряжение в качестве параметра передачи информации,действительно эффективно применяются во многих производственных задачах, существует круг приложений, где использование характеристик тока предпочтительнее. Существенным недостатком при использования напряжения для передачи сигналов в промышленных условиях является ослабление сигнала при его передаче на значительные расстояния вследствие наличия сопротивления проводных линий связи. Можно,конечно, использовать высокий входной импеданс устройств, чтобы обойти потери сигнала. Однако, такие устройства будут весьма чувствительны к шуму, которые индуцируют находящиеся поблизости моторы, приводные ремни или радиовещательные передатчики.

Согласно первому закону Кирхгофа сумма токов, втекающих в узел,равна сумме токов, вытекающих из узла.
В теории, ток,протекающий в начале контура,должен достичь его конца в полном объеме,
как показано на рис.1. 1.

Рис.1. В соответствии с первым законом Кирхгофа ток в начале контура равен току в его конце.

Это основной принцип, на котором работает контур измерения.. Измерение тока в любом месте токовой петли (измерительного контура) дает один и тот же результат. Используя токовые сигналы и приемные устройства для сбора данных с низким входным сопротивлением, в промышленных приложениях возможно получить значительный выигрыш от улучшения помехоустойчивости и увеличения длины линии связи.

Компоненты токовой петли
В состав основных компонентов токовой петли входят источник постоянного тока, первичный преобразователь, устройство сбора данных, и провода, соединяющие их в ряд, как показано на рисунке 2.

Рис.2. Функциональная схема токовой петли.

Источник постоянного тока обеспечивает питание системы. Преобразователь регулирует ток в проводах в диапазоне от 4 до 20 мА, где 4 мА представляет собой «живой» ноль, а 20 мА представляет максимальный сигнал.
0 mA (отсутствие тока) означает разрыв в цепи. Устройство сбора данных измеряет величину регулируемого тока. Эффективным и точным методом измерения тока является установка прецизионного резистора- шунта на входе измерительного усилителя устройства сбора данных (на рис.2) для преобразования тока в напряжение измерения, чтобы в конечном итоге получить результат,однозначно отражающий сигнал на выходе преобразователя.

Чтобы помочь лучше понять принцип работы токовой петли, рассмотрим для примера конструкцию системы с преобразователем, имеющую следующие технические характеристики:

Преобразователь используется для измерения давления
Преобразователь расположен в 2000 футов от устройства измерения
Ток,измеряемый устройством сбора данных, обеспечивает оператора информацией о величине давления, приложенного к преобразователю

Рассмотрение примера начнем с подбора подходящего преобразователя.

Проектирование токовой системы

Выбор преобразователя

Первым шаг в проектировании токовой системы является выбор преобразователя. Независимо от типа измеряемой величины (расход, давление, температура, и т.д.) важным фактором в выборе преобразователя является его рабочее напряжение. Только подключение источника питания к преобразователю позволяет регулировать величину тока в линии связи. Значение напряжения источника питания должно находиться в допустимых пределах: больше, чем минимально необходимое,меньше, чем максимальное значение, которое может привести к повреждению преобразователя.

Для токовой системы, рассматриваемой в примере, выбранный преобразователь измеряет давление и имеет рабочее напряжение от 12 до 30 В. Когда преобразователь выбран, требуется правильно измерить токовый сигнал, чтобы обеспечить точное представление о давлении, подаваемом на датчик.

Выбор устройства сбора данных для измерения тока

Важным аспектом, на который следует обратить внимание при построении токовой системы, является предотвращение появления токового контура в цепи заземления. Общим приемом в таких случаях является изоляция. Использовав изоляцию, вы можете избежать влияния контура заземления, возникновение которого поясняет рис.3.

Рис.3. Контур заземления

Заземляющие контуры образуются при двух подключенных терминалов в цепи в разных местах потенциалов. Эта разница приводит к появлению дополнительного тока в линии связи, что может привести к появлению ошибок при измерениях.
Под изоляцией устройства сбора данных понимается электрическое отделение земли источника сигнала от земли входного усилителя измерительного устройства, как показано на рисунке 4.

Поскольку ток не может течь через барьер изоляции, точки заземления усилителя и источника сигнала имеют один и тот же потенциал. Таким образом исключается возможность непреднамеренно создать контур заземления.

Рис.4. Синфазное напряжение и напряжение сигнала в схеме с изоляцией

Изоляция также предотвращает от повреждения устройство сбора данных при наличии больших синфазных напряжений. Синфазным называют напряжение одинаковой полярности,которое присутствует на обоих входах инструментального усилителя. Например, на рис.4. и положительный (+) ,и отрицательный (-) входы усилителя имеют +14 V синфазного напряжения. Многие устройства сбора данных имеют максимальный входной диапазон ±10 В. Если устройство сбора данных не имеет изоляции и синфазное напряжение выходит за максимальный входной диапазон, вы можете повредить устройство. Хотя нормальное (сигнальное) напряжение на входе усилителя на рис.4 составляет только +2 В, добавка +14 в может дать в результате напряжение +16 В
(Сигнальное напряжение - это напряжение между « + » и « - » усилителя, рабочее напряжение есть сумма нормального и синфазного напряжения),что представляет опасный уровень напряжения для устройств сбора с меньшим рабочим напряжением.

При изоляции общая точка усилителя электрически отделена от нуля заземления. В схеме на рисунке 4 потенциал в общей точке усилителя «приподнят» на уровень +14 V. Такой прием приводит к тому, величина входного напряжения падает с 16 до 2 В.Теперь сбора данных, устройства больше не на риск перенапряжения ущерб. (Обратите внимание, что изоляторы имеют максимальную синфазного напряжения они могут отвергнуть.)

После того как устройство сбора данных изолировано и защищено, последним шагом при комплектовании токовой петли является выбор соответствующего источника питания.

Выбор источника питания

Определить, какой источник питания наилучшим образом отвечает вашим требованиям, весьма просто. При работе в токовой петле, блок питания должен выдавать напряжение, равное или большее, чем сумма падений напряжений на всех элементах системы.

Устройство сбора данных в нашем примере использует прецизионной шунт для измерения тока.
Необходимо рассчитать падение напряжения на этом резисторе. Типовой шунтирующий резистор имеет сопротивление 249 Ω. Основные расчеты при диапазоне тока в токовой петле 4 .. 20 мА
показывают следующее:

I*R=U
0,004A*249Ω= 0,996 V
0,02A*249Ω= 4,98 V

С шунта сопротивлением 249 Ω мы можем снять напряжение в диапазоне от 1 до 5 В, увязав величину напряжения на входе устройства сбора данных с величиной выходного сигнала преобразователя давления.
Как уже упоминалось,преобразователь давления требует минимального рабочего напряжения 12 В при максимальным 30 В. Добавив падение напряжения на прецизионном шунтирующем резисторе к рабочему напряжению преобразователя, получаем следующее:

12 В+ 5 В=17 В

На первый взгляд, хватит напряжения 17В.Необходимо,однако, учесть дополнительную нагрузку на блок питания, которую создают провода, имеющее электрическое сопротивление.
В случаях, когда датчик находится далеко от измерительных приборов, вы должны учитывать фактор сопротивления проводов при расчетах токовой петли. Медные провода имеют сопротивление постоянному току, которое прямо пропорционально их длине. С датчиком давления из рассматриваемого примера вам необходимо учесть 2000 футов длины линии связи при определении рабочего напряжения источника питания. Погонное сопротивление одножильного медного кабеля 2.62 Ω/100 футов. Учет этого сопротивления дает следующее:

Сопротивление одной жилы длиной 2000 футов составит 2000*2,62/100= 52,4 м.
Падение напряжения на одной жиле составит0,02* 52,4= 1,048 В.
Чтобы замкнуть цепь,необходимы два провода,тогда длина линии связи удваивается, и
полное падение напряжения составит 2,096 В. В итоге около 2.1 В благодаря тому,что расстояние от преобразователя до вторичного прибора составляет 2000 футов. Просуммировав падения напряжения на всех элементах контура, получим:
2,096 В + 12 В+ 5 В=19,096 В

Если вы использовали 17 V для питания рассматриваемой схемы, то напряжение, подаваемое на преобразователь давления будет ниже минимального рабочего напряжения за счет падения на сопротивлении проводов и шунтирующем резисторе. Выбор типового источник питания 24 В удовлетворит требованиям по питанию для преобразователя. Дополнительно имеется запас напряжения для того, чтобы разместить датчик давления на большем расстоянии.

С выбором правильно подобранных преобразователя, устройства сбора данных, длины кабелей и источника питания разработка простой токовой петли завершена. Для более сложных приложений вы можете включить дополнительные каналы измерений в систему.

Что делать, если Вам требуется считывать показания датчика температуры, работающего в условиях промышленного производства и расположенного на расстоянии 30 метров от управляющего контроллера? После долгих раздумий и тщательного изучения существующих решений, Вы наверняка выберете не Wi-Fi, Bluetooth, ZigBee, Ethernet или RS-232/423, а токовую петлю 20 мА, которая с успехом используется уже более 50 лет. Несмотря на кажущуюся архаичность этого интерфейса, такой выбор, на самом деле, является оправданным во многих случаях.

В данной статье, построенной в виде вопросов и ответов, раскрываются особенности использования токовой петли для сбора данных и управления. В статье также рассказывается о различных улучшениях и модификациях токовой петли, которые были сделаны за всю историю ее практического использования.

Что такое токовая петля 20 мА?

Токовая петля 0-20 мА или токовая петля 4-20 мА представляет собой стандарт проводного интерфейса, в котором сигнал кодируется в виде аналогового тока. Ток 4 мА соответствует минимальному значению сигнала, а ток 20 мА соответствует максимальному значению сигнала (рис. 1). В типовом приложении напряжение датчика (часто милливольтного диапазона) преобразуется в токовый сигнал из диапазона 4-20 мА. Токовая петля использовалась во всех аналоговых системах еще до появления цифрового управления и заменяла пневматические системы управления в промышленных установках.

Рис. 1. При работе с датчиком токовая петля включает пять основных элементов: датчик, передатчик, источник питания, проводящий контур (петлю) и приемник

Может ли токовая петля использоваться совместно с цифровыми сигналами?

Да, может. Обычно для представления логического «0» используется токовый сигнал 4 мА, а для кодирования логической «1» используется токовый сигнал 20 мА. Подробнее об этом рассказывается далее.

Где используется интерфейс токовой петли 4-20 мА?

Он используется в основном в промышленных приложениях, в которых датчик и контроллер или контроллер и актуатор расположены на значительном удалении друг от друга, а коммуникационные кабели пролегают в помещениях с большим уровнем электромагнитных помех.

Почему используют токовую петлю, а не традиционные интерфейсы, например, RS-232, RS-423, RS-485 и т.д.?

Существует две веские причины.

Во-первых, низкоомный контур в токовой петле обеспечивает высокую стойкость к внешним шумам. В соответствии с законом Кирхгофа сумма токов замкнутого контура равна нулю. По этой причине в токовой петле невозможно ослабление или усиление тока (рис. 2). На практике питание токовой петли осуществляется от источника напряжения 12 до 30 В, но электроника передатчика преобразует напряжение в ток. С другой стороны, интерфейсы, использующие сигналы напряжения, строятся на основе высокоомных контуров, которые оказываются весьма восприимчивыми к помехам.

Во-вторых, токовая петля имеет естественную функцию самодиагностики: если контур разрывается - ток падает до нуля, что автоматически определяется схемой. После этого формируется аварийное предупреждение и производится локализация разрыва.

Рис. 2. Принцип, лежащий в основе токовой петли, определяется первым законом Кирхгофа: сумма токов замкнутого контура равна нулю

Как токовая петля реализуется на стороне датчика и на стороне актуатора?

Устройства, подключаемые к токовой петле, можно разделить на две основные группы: датчики и актуаторы. В датчиках реализуется схема передатчика, который формирует линейный токовый сигнал в диапазоне 4…20 мА. В актуаторах используется схема приемника, который преобразует ток в управляющее напряжение. Например, для задания минимальной скорости вращения двигателя контроллер формирует токовый сигнал 4 мА, а для задания максимальной скорости - сигнал 20 мА.

Почему вместо токовой петли не использовать беспроводной интерфейс, например, Wi-Fi или другой проводной интерфейс, например, Ethernet?

Выше уже было сказано, что токовая петля обладает двумя важными преимуществами: высокой помехозащищенностью и встроенной возможностью самодиагностики. Кроме того, данный интерфейс имеет и другие достоинства, в том числе: невысокую стоимость реализации, легкость настройки и отладки, простоту диагностики, высокую надежность, возможность создания длинных линий связи вплоть до нескольких сотен метров (в том случае, если источник питания позволяет покрыть падение напряжения на проводах).

Другие проводные стандарты сложнее настраивать и обслуживать, они чувствительны к шуму, слабо защищены от взлома и отличаются высокой стоимостью реализации.

Создать беспроводную связь в промышленной среде вполне возможно, если речь идет о небольших расстояниях. Но при работе на больших дистанциях возникают трудности, связнные с необходимостью многоуровневой фильтрации, реализацией механизмов обнаружения и исправления ошибок, что приводит также и к избыточности данных. Все это увеличивает стоимость и риск разрыва связи. Такое решение вряд ли оправдано, если требуется всего лишь подключить простой датчик температуры или контроллер клапана/двигателя.

Как сигнал токового контура преобразуется в напряжение?

Все довольно просто: ток проходит через резистор, а получаемое падение напряжения усиливается с помощью операционного или дифференциального усилителя. По разным причинам для резистора токовой петли было выбрано стандартное значение сопротивления 250 Ом. Таким образом, сигналу 4 мА соответствует напряжение 1 В, а сигналу 20 мА соответствует напряжение 5 В. Напряжение 1 В оказывается достаточно большим по сравнению с фоновыми шумом и может быть легко измерено. Напряжение 5 В также является весьма удобным и лежит в диапазоне допустимых значений для большинства аналоговых схем. В то же время, максимальная мощность, рассеиваемая на резисторе токовой петли (I 2 R), составляет всего 0,1 Вт, что приемлемо даже для устройств с ограниченными возможностями по отводу тепла.

Действительно ли токовая петля 20 мА является пережитком прошлого и используется только в устаревших электронных приборах?

Совсем нет. Производители интегральных микросхем и приборов все еще выпускают новые продукты, поддерживающие этот интерфейс.

Каким образом аналоговая токовая петля адаптируется к цифровому миру?

Как было сказано выше, токовая петля позволяет передавать цифровые данные. Результаты измерений от датчика можно посылать не в виде аналогового непрерывного сигнала, а в виде дискретных токовых сигналов. Типовая разрядность данных при этом составляет от 12 до 16 бит. Иногда используют разрядность 18 бит, но это скорее является исключением, так как для обычных промышленных систем вполне хватает и 16 бит. Таким образом, токовая петля может быть интегрирована в цифровые системы управления.

Что еще требуется для передачи цифровых данных?

Для выполнения обмена цифровыми данными будет недостаточно простой пересылки битов в виде токовых импульсов. Необходимо каким-то образом сообщать пользователю, когда начинается и заканчивается пакет данных. Кроме того, требуется контролировать появление ошибок и выполнять некоторые другие функции. Таким образом, для передачи цифровых данных с помощью токовой петли требуется определить формат кадров и реализовать соответствующий протокол передачи.

Что такое стандарт HART?

HART - общепринятый стандарт, который оговаривает не только физическое кодирование битов, но определяет формат и протокол передачи данных. Например, в формате кадра используются различные поля: многобайтовая преамбула, стартовый байт, многобайтовый адрес, поле команды, поле данных, поле, указывающее количество байтов данных, фактические данные и, наконец, контрольная сумма.

Разработка HART была инициирована Rosemount Corp в 1980-х годах, и вскоре он стал отраслевым стандартом де-факто. Обозначение HART (Highway Addressable Remote Transducer) было закреплено в 1990-х годах, когда стандарт стал открытым и даже был реализован в виде стандарта МЭК для использования в Европе. HART претерпел три основных модификации, но сохранил обратную совместимость со всеми предыдущими версиями, что является крайне важным для рынка промышленной электроники.

Дополнительной особенностью HART является включение информации о производителе электронного устройства в поле команды. Эта информация позволяет избежать путаницы при выполнении установки, отладки и документирования, так как существует более 100 поставщиков HART-совместимых устройств.

Какие еще улучшения дает HART?

Использование байтового поля адреса позволяет одной токовой петле работать с множеством подключенных датчиков, поскольку каждому датчику может быть присвоен уникальный номер. Это приводит к значительной экономии средств, затрачиваемых на прокладку проводов и монтаж по сравнению с соединением точка-точка.

Подключение множества устройств к одной общей токовой петле означает, что эффективная скорость передачи данных для каждого отдельного устройства уменьшается. Однако чаще всего это не является проблемой. Дело в том, что в большинстве промышленных приложений обновление данных и передача команд происходит довольно редко - порядка одного раза в секунду. Например, температура - наиболее часто измеряемая физическая величина- как правило, меняется достаточно медленно.

Таким образом, стандарт HART делает токовую петлю 20 мА востребованной даже в век цифровых технологий.

Есть ли какие-либо другие улучшения, которые повышают актуальность данного интерфейса?

Да, другое важное усовершенствование касается питания. Напомним, что токовая петля использует диапазон сигналов 4-20 мА. Источник тока может находиться в передатчике или приемнике. В то же время и датчику, и актуатору требуется дополнительный источник для питания собственной электроники (АЦП, усилители, драйверы и т.д.). Это приводит к усложнению монтажа и увеличению стоимости.

Однако по мере развития интегральных технологий потребление приемников и передатчиков уменьшалось. В результате появилась реальная возможность питания устройств непосредственно от токовой петли. Если потребление электронных компонентов, входящих в состав датчика или актуатора, не превышает 4 мА, то нет необходимости в дополнительном источнике питания. Пока напряжение сигнального контура достаточно велико, интерфейс токовой петли может питать сам себя.

Есть ли какие-либо другие преимущества у устройств с питанием от токовой петли?

Да. Многие устройства с питанием от сигнальных линий должны иметь разрешение на использование во взрывоопасных зонах. Например, они должны быть сертифицированы, как невоспламеняющиеся (N.I.) или искробезопасные (I.S.). Для устройств любого из этих классов требуется, чтобы энергии, потребляемой электроникой, было так мало, чтобы ее не хватало для возгорания как при нормальных условиях эксплуатации, так и при авариях. Потребляемая мощность устройств с питанием от токовой петли столь мала, что они обычно без проблем проходят данную сертификацию.

Что делают производители ИС для упрощения работы с токовой петлей?

Они делают то же, что и всегда: создают ИС, которые обеспечивают реализацию не только базового функционала, но множества других дополнительных возможностей. Например, Maxim Integrated MAX12900 представляет собой малопотребляющий высокоинтегрированный аналоговый интерфейс (AFE) для токовой петли 4-20 мА (рис. 3).

Рис. 3. MAX12900 - малопотребляющий высокоинтегрированный аналоговый интерфейс (AFE) для токовой петли 4-20 мА, который обеспечивает выполнение базовых функций, а также множества дополнительных полезных возможностей, в том числе питание напрямую от токовой петли

MAX12900 обеспечивает не только передачу данных, но и питание напрямую от токовой петли. Микросхема объединяет в одном корпусе множество функциональных блоков: стабилизатор напряжения LDO; две схемы для формирования ШИМ-сигналов; два малопотребляющих и стабильных ОУ общего назначения; один широкополосный ОУ с нулевым смещением; два диагностических компаратора, схему управления подачей питания для обеспечения плавного включения; источники опорного напряжения с минимальным дрейфом.

Можете ли вы привести пример реализации датчика с интерфейсом токовой петли?

Компания Texas Instruments предлагает TIDM-01000 - референсную схему датчика температуры с интерфейсом токовой петли 4-20 мА. Схема построена на базе микроконтроллера MSP430 и представляет собой бюджетное решение с минимальным набором компонентов.

Рис. 4. Референсная схема TIDM-01000 представляет собой датчик температуры (RTD) с токовым интерфейсом 4-20 мА. Схема построена на базе нескольких ИС, которые обеспечивают обработку показаний датчика и взаимодействие с токовой петлей

В TIDM-01000 для управления током используется модуль Smart Analog Combo (SAC), встроенный в микроконтроллер MSP430FR2355. Таким образом, отдельный ЦАП не требуется. Схема имеет 12-битное разрешение с шагом квантования выходного тока 6 мкА. Предложенное решение обеспечивает защиту от обратной полярности, а защита входов токовой петли отвечает требованиям IEC61000-4-2 и IEC61000-4-4 (рис. 5).

Рис. 5. Передатчик, построенный с использованием TIDM-01000, умещается на небольшой печатной плате. Компактность является еще одним достоинством токовой петли

Заключение

В статье были рассмотрены основные вопросы, посвященные использованию токовой петли 4-20 мА в промышленных приложениях. Несмотря на то, что этот интерфейс является настоящей «древностью» по меркам электроники, тем не менее, его по-прежнему широко используют, в том числе в современных цифровых устройствах. В статье также рассказывалось о том, каким образом питание от токового контура дополнительно расширяет возможности данного интерфейса.

Нижний Новгород

Данная статья является продолжением серии публикаций в журнале ИСУП, посвященных нормирующим *, **, *** ****. Статья «Преобразование подобного в подобное в системах измерения и управления» (ИСУП. 2012. № 1) была посвящена нормирующим , которые преобразуют унифицированные сигналы на входе в унифицированные сигналы на выходе.

Почему именно сигнал 4…20 мА?

Широкое распространение токового унифицированного сигнала 4…20 мА объясняется следующими причинами:
- на передачу токовых сигналов не оказывает влияния сопротивление соединительных проводов, поэтому требования к диаметру и длине соединительных проводов, а значит, и стоимость, снижаются;
- токовый сигнал работает на низкоомную (по сравнению с сопротивлением источника сигнала) нагрузку, поэтому наведенные электромагнитные помехи в токовых цепях малы по сравнению с аналогичными цепями, в которых используются сигналы напряжения;
- обрыв линии передачи токового сигнала 4…20 мА однозначно и легко определяется измерительными системами по нулевому уровню тока в цепи (в нормальных условиях он должен быть не меньше 4 мА);
- токовый сигнал 4…20 мА позволяет не только передавать полезный информационный сигнал, но и обеспечивать электропитание самого нормирующего преобразователя: минимально допустимого уровня 4 мА достаточно для питания современных электронных устройств.

Характеристики преобразователей токовой петли 4…20 мА

Рассмотрим основные характеристики и особенности, которые необходимо учитывать при выборе . В качестве примера приведем нормирующие преобразователи НПСИ-ГРТП, выпускаемые научно-производственной фирмой «КонтрАвт» (рис. 2).


Рис. 2. Внешний вид НПСИ-ГРТП - выпускаемых НПФ «КонтрАвт» преобразователей с гальваническим разделением 1, 2, 4 каналов токовой петли

Предназначены для выполнения всего лишь двух основных функций:
- измерение активного токового сигнала 4…20 мА и преобразование его в такой же активный токовый сигнал 4…20 мА с коэффициентом преобразования 1 и с высоким быстродействием;
- гальваническое разделение входных и выходных сигналов токовой петли.

Основная погрешность преобразования НПСИ-ГРТП составляет 0,1 %, температурная стабильность - 0,005 % / °C. Рабочий диапазон температур - от -40 до +70 °C. Напряжение изоляции - 1500 В. Быстродействие - 5 мс.

Варианты подключения к источникам активных и пассивных сигналов показаны на рис. 3 и 4. В последнем случае требуется дополнительный источник питания.



Рис. 3. Подключение преобразователей НПСИ-ГРТП к активному источнику


Рис. 4. Подключение преобразователей НПСИ-ГРТП к пассивному источнику с применением дополнительного блока питания БП

В системах измерения, где необходимо разделение входных сигналов, источником входного сигнала, как правило, являются измерительные датчики (ИД), а приемниками - вторичные измерительные приборы (ИП) (регуляторы, контроллеры, регистраторы и пр.).

В системах управления, где требуется разделение выходных сигналов, источниками являются управляющие устройства (УУ) (регуляторы, контроллеры, регистраторы и пр.), а приемниками - исполнительные устройства (ИУ) с токовым управлением (мембранные исполнительные механизмы (МИМ), тиристорные регуляторы, частотные преобразователи и пр.).

Примечательно, что для преобразователя НПСИ-ГРТП, выпускаемого , не требуется отдельное питание. Он запитывается от входного активного источника тока 4…20 мА. При этом на выходе также формируется активный сигнал 4…20 мА, и дополнительного источника в выходных цепях не требуется. Поэтому решение на базе разделителей токовой петли, которое используется в НПСИ-ГРТП, является весьма экономичным.

Выпускаются три модификации преобразователя: . Они различаются по количеству каналов (1, 2, 4 соответственно) и конструктивному исполнению (рис. 2). Одноканальный преобразователь размещен в малогабаритном узком корпусе шириной всего 8,5 мм (габариты 91,5 × 62,5 × 8,5 мм), двухканальный и четырехканальный - в корпусе шириной 22,5 мм (габариты 115 × 105 × 22,5 мм). Преобразователи с гальванической развязкой применяются в системах с десятками и сотнями сигналов, для этих систем размещение такого количества преобразователей в конструктивных оболочках (шкафах) становится важнейшей проблемой. Ключевым фактором здесь является ширина одного канала преобразования вдоль DIN-рельса. в 1-, 2‑ и 4‑канальном исполнениях имеют предельно малую «ширину канала»: 8,5, 11,25 и 5,63 мм соответственно.

Следует обратить внимание, что в многоканальных модификациях НПСИ-ГРПТ2 и НПСИ-ГРТП4 все каналы полностью не связаны между собой. С этой точки зрения работоспособность одного из каналов никак не влияет на работу других каналов. Вот почему один из аргументов против многоканальных преобразователей - «сгорает один канал, а перестает работать весь многоканальный прибор, и это резко понижает безопасность и устойчивость системы» - не работает. Зато такое важное положительное свойство многоканальных систем, как более низкая «цена канала», проявляется в полной мере. Двух- и четырехканальные модификации преобразователей снабжены винтовыми разъемными соединителями, которые облегчают их монтаж, техническое обслуживание и ремонт (замену).

В ряде задач требуется подать сигнал 4…20 мА на несколько гальванически изолированных приемников. Для этого можно применить как одноканальные преобразователи НПСИ-ГРТП1, так и многоканальные НПСИ-ГРТП2 и НПСИ-ГРТП4. Схемы соединения приведены на рис. 5.



Рис. 5. Применение одноканальных и двухканальных преобразователей для размножения сигнала «1 в 2»

Для удобства монтажа и обслуживания подключение внешних соединений в одноканальной модификации производится пружинными клеммными соединителями, а в двух- и четырехканальных - разъемными винтовыми соединителями.



Рис. 6. Подключение внешних линий с помощью разъемных клеммных соединителей

Таким образом, новую линейку преобразователей для разделения токовой петли 4…20 мА, представленную НПФ «КонтрАвт», можно вполне обоснованно назвать компактным и экономичным решением, способным конкурировать по совокупности характеристик с соответствующими импортными аналогами. Преобразователи предоставляются в опытную эксплуатацию, поэтому пользователь имеет возможность опробовать устройства в работе, оценить их характеристики и принять взвешенное решение о целесообразности их применения.
____________________________