Вода из воздуха генератор воды своими руками. Вода из воздуха: Как работают генераторы атмосферной воды. В общую копилку

Генератор воды из воздуха на приусадебном участке. March 9th, 2009

Египет на дачном участке
Проблема воды на приусадебном участке, на даче, в кооперативе не является редкостью. Прокладка водопровода или бурение скважины не всегда может себе позволить даже кооператив. Копание колодца вряд ли дешевле и целесообразней.
Есть ли выход из этого положения?
Есть и довольно простой и надёжный. . .
.

Насыпается пирамида из щебня на бетонном основании. Днём в тёплое время года щебёнка прогревается прямыми солнечными лучами и потоками тёплого воздуха. Ночью водяные пары, содержащиеся в атмосфере, конденсируются на остывшей щебёнке и вода стекает в углубление фундамента и далее по отводной трубе - в место сбора.
На Рис. 1 показан разрез фундамента.

Высота пирамиды выбирается от потребности воды.
Ориентировочно, при высоте 2,5 м. за сутки такая конструкция может дать, в зависимости от влажности воздуха и суточных перепадов температуры, от 150 до 350 литров воды, что практически обеспечит любой приусадебный или дачный участок.

Для насыпки пирамиды лучше брать крупную щебёнку (гравий) размером 5-7 см. т.к. тогда вся конструкция свободно будет продуваться тёплым воздухом.
Щебень из гранита можно считать пределом мечтаний.

Для насыпки щебня на основание в форме пирамиды используется металлический каркас, который устанавливается на фундамент и по нему выравниваются грани.
После окончания формовки сверху можно натянуть металлическую оцинкованную сетку для предотвращения сползания щебня.
Высота фундамента выбирается по желанию и материальным возможностям владельца. Однако, он должен быть достаточно прочным, чтобы выдержать вес щебня.
Чтобы фундамент не делать высоким для стока воды, лучше всего пирамиду строить на пригорке, если на участке или рядом такой имеется.

Ориентированная по краям света пирамида помимо конденсации воды будет оздоравливать и нормализовать всё окружающее пространство.

Если есть биопатогенные зоны, то они будут нейтрализованы;
вода, полученная в пирамиде, будет целебной и для человека, и для растений, и для животных;

Если вода из этого конденсатора будет использоваться для питья и приготовления пищи, что весьма желательно, то перед насыпкой пирамиды, основание фундамента и весь щебень следует хорошо промыть водой, а полученную воду пропускать через механический фильтр.

Чтобы эта конструкция приносила максимальную пользу, строить её следует с соблюдением всех пропорций, которые даны в таблице 1 для наиболее вероятных размеров пирамиды.
Таблица 1

Если у кого-либо появится желание и возможность рядом с пирамидой построить бассейн, куда будет стекать вода, то переоценить такой комплекс будет практически невозможно.
Утренняя ванна, принятая в воде, пропитанной энергией пирамиды, на всю жизнь заменит всех врачей и лекарства.
В качестве бассейна можно использовать обыкновенную ванну, установленную с северной стороны пирамиды.

Саму пирамиду весьма желательно строить с южной стороны по отношению к дому или дачной постройки.

В целях экономии средств, материалов, времени постройки и площади, пирамиду можно построить одну на несколько участков.

Чтобы дождевая вода не попадала на конструкцию, над ней желательно сделать навес из прозрачного материала (стеклопластик, плёнка, стекло)
ostrov

Ученые создали машину, извлекающую воду из воздуха

«Водяную мельницу» можно использовать для получения чистой питьевой воды практически везде, где есть электричество. Для производства воды устройству достаточно электроэнергии, расходуемой тремя электрическими лампами.

Получение воды, пригодной для питья, проходит несколько этапов. Вначале устройство втягивает в себя воздух через специальные фильтры, очищая его от пыли и сора, потом воздух охлаждается до температуры, при которой появляется влага. Конденсированная вода проходит через резервуар, где с помощью ультрафиолетовых излучений уничтожаются возможные инфекции. В итоге вода очищается, а затем по трубам поступает в холодильник или кухонный кран. Сделанное из белого пластика устройство напоминает гигантский мяч для гольфа, расколотый пополам.

Разработчики утверждают, что сейчас в «Водяной мельнице» нет острой необходимости. Однако уже сегодня люди не хотят зависеть от систем водоснабжения, на которые нельзя положиться.

Устройством в первую очередь должны заинтересоваться сторонники «зеленого» образа жизни. Дело в том, что производство и потребление воды в пластиковых бутылках уже давно превратилось в экологическую катастрофу. Только жители США потребляют порядка 30 миллиардов литров воды в бутылках в год. 30 миллионов бутылок каждый день оказываются на свалках. Неудивительно, что в Тихом океане несколько лет назад был обнаружен целый остров из мусора, значительную часть которого составляют именно пластиковые бутылки.

Недостатков у «Водяной мельницы» всего два. Во-первых, цена – 1200 долларов. Как отмечают разработчики, в условиях кризиса машина может оказаться недоступной для массового потребителя. Однако покупка WaterMill окупит себя уже через пару лет, ведь ее обладатель перестанет покупать воду в пластиковых бутылках.

Во-вторых, устройство может работать не везде. Например, в Аризоне нередко происходит снижение уровня относительной влажности ниже 30%, что мешает получению воды из воздуха. Впрочем, ученые нашли выход и из этой ситуации: встроенный в устройство компьютер позволяет увеличивать производительность воды на рассвете, когда уровень влажности выше всего.

Материал подготовлен редакцией rian.ru на основе информации открытых источников

Если Вы когда-нибудь оказывались в экстремальных условиях пребывания, Вам может быть знакома проблема с добычей воды. Например, путешественники имеют все шансы попасть в ситуацию, когда вода закончилась, а рядом нет ни реки, ни хоть какого-то родника. А все еще с детства знают, что человек может прожить без еды намного дольше чем без воды. Если Вы окажитесь надолго без воды, помощи можете и не дождаться.

Но есть способ получить немного воды из воздуха, так как она умеет конденсироваться . Чтобы получить количество воды, которого хватит для поддержания организма в функционирующем состоянии, нужно построить специальное устройство. Изготавливается оно из тех предметов, которые обычно берут с собой в путешествие. Для постройки конденсирующего устройства Вам понадобится:

  • Лопата
  • Кусок полиэтилена
  • Тонкая трубочка, которую используют в капельницах
  • Камни

Этапы конструирования


Вода из воздуха будет конденсироваться долго. Может пройти больше суток прежде чем наберется и пол литра воды. Поэтому рекомендуется сделать несколько таких «ловушек» для воды. В ночное время процесс конденсации идет намного быстрее чем днем – полиэтилен остывает быстро, а земля под ним – нет.

Экология потребления.Наука и техника:Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?..

Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?.. Уже сейчас примерно один человек из пяти испытывает трудности с нехваткой питьевой воды. И даже горожанам, привыкшим к комфорту, предоставляемому современными системами водоснабжения, не стоит об этом забывать.

Как там говорили на уроках географии? «Большая часть поверхности Земли покрыта водой...» А это примерно 326 млн кубических миль воды. 97% из них – солёная из морей и океанов, и лишь 3% – пресная. Но и из этой части 99,3% находятся в виде льда, а половина того, что осталось, – под землёй.

К 2025 году девять миллиардов человек на планете будут делить всё-то же количество доступной воды. Большинство из них будут жить в больших перенаселённых городах, оказывая гигантское давление на местные водные ресурсы. А если вспомнить о том, что городские водопроводы постоянно приходится чинить, латать и обновлять, то будущее кажется совсем уж чёрным и незавидным.

Так где же взять чистую воду? В воздухе содержится, по разным оценкам, от 12 до 16 тыс. км3 влаги (или 0,000012% всей воды на Земле). Этот объём можно сравнить с количеством воды в Великих озёрах Северной Америки (самом крупном природном хранилище пресной воды в мире).

Между тем во многих даже самых бедных и густонаселённых странах мира воздух настолько влажный и тёпый, что воду можно было бы конденсировать прямо из него.

Кубический метр воздуха содержит (в зависимости от влажности) от 4 до 25 граммов водяных паров. Существующие ныне установки могут собрать в среднем около 20-30% от этого количества. Самые лучшие условия для них (высокие влажность и температура) – в странах, расположенных в пределах 30 градусов широты от экватора.

Так как природа постоянно пополняет запасы воды в воздухе, устройства, производящие ценную жидкость из воздуха, не могут ничем навредить окружающей среде (даже если их будет установлено очень много в каком-то определённом месте). Получается, процесс может идти бесконечно и работа аппаратов ограничена лишь сроком их службы.

Поговорим о том, как работают генераторы атмосферной воды (AWG – Atmospheric water generator). Первые системы, поставляющие воду из воздуха, были разработаны ещё в 1990-х.

По сути, они были похожи на систему, что используется для дегидратации воздуха в холодильниках (ещё можно вспомнить про дождь из-под кондиционеров в современном мегаполисе). Компрессор заставляет хладагент проходить через хитросплетение трубок, в то же время вентилятор прогоняет над трубками воздух. Если температура охлаждающих спиралей чуть ниже точки росы, около 40% жидкости из воздуха будет конденсироваться на них, стекая в специальный контейнер. Если же трубки будут слишком холодными, то на их поверхности будет образовываться лёд (что, конечно же, отразится на функциональности аппарата).

Но то в холодильнике, а в генераторах воды из атмосферы также присутствуют специальные воздушные фильтры, ультрафиолетовые стерилизаторы и угольные фильтры для собранной во¬ы, приборы, обогащающие её кислородом, датчики уровня воды в контейнере.

Оптимальные параметры работы установок: температура выше 15,5°С и относительная влажность (RH) выше 40%, а также не слишком большая высота над уровнем моря (не выше 1200 метров). Хотя в большинстве инструкций говорится о 20-40 °С и RH 60-100%.

Понятно, что установка таких генераторов предполагает наличие входа воздуха извне помещения. Тут целый букет факторов: как это ни удивительно, атмосферный воздух намного чище «домашнего», а «офисный» уже высушен кондиционерами. Да и собирать влагу из помещения вредно: люди и так страдают от его низкой влажности. Хотя самые маленькие установки при наличии хорошей вентиляции можно поставить на кухне или в ванной.

Где может пригодиться такой дегидратор? Начинали мы с пустыни – там он пригодится жителям далёких поселений, для которых подвоз бутилированной воды дорог или невозможен, военным, ведущим боевые действия вдали от источников воды, и представителям гуманитарных и спасательных миссий (в том числе врачам).

AWG могут быть использованы для домашних и сельскохозяйственных нужд, в офисных помещениях, школах, отелях, на кораблях, совершающих круизные путешествия, в спортивных центрах и прочих общественных местах. В коммерческих целях некоторые производители предлагают даже вариант розлива воды из воздуха в бутылки!

А теперь попробуем рассказать об основных предлагаемых продуктах на рынке добычи воды из воздуха.

Element four

Основной продукт компании Element four называется «Водяная мельница» (WaterMill).

Она собирает до 12 л воды в сутки для различных домашних нужд и при этом обладает приятным дизайном. Владельцы могут не беспокоиться о наличии в собранной жидкости токсинов и бактерий. Специальные системы заботятся о затрате устройством как можно меньшего количества энергии (а в скором времени установку можно будет подсоединить к альтернативным источникам энергии). На специальном экране отображается информация о температуре, относительной влажности и количестве полученной влаги.

Цены на WaterMill объявят в начале 2009 г. А началось все в 2004 г., когда Джонатан Ритчи и Рик Ховард решили создать свой генератор воды из воздуха. Поначалу они работали в канадской исследовательской компании Freedom Water, но в 2008-м был произведён ребрендинг, и вот Element Four выпустила свой первый продукт.

AirWater Corporation

Эта компания была образована в феврале 2003 г. после корпоративного решения Universal Communication Systems (UCSY) начать работу в области высоких технологий по извлечению воды из воздуха. Впрочем, различные научные исследования она проводила более 13 лет, в течение которых запатентовала многие свои технологические решения.

AirWater Corporation специализируется на установках, поставляющих воду в количестве от 100 до 5000 литров в день. Правда, и габариты у этих аппаратов соответствующие. Есть даже специальные мобильные установки, снабжающие питьевой водой армейские подразделения в полевых условиях.

В арсенале этой фирмы присутствуют мобильные устройства и те, что одновременно делают лёд. У Air Water Corporation уже существуют решения для ирригации и отдалённых районов, в которых их продукт может работать от солнечных батарей (кстати, эта компания производит и их тоже).

Более крупные (и сопоставимые) генераторы воды из атмосферного воздуха производят также компании White Buffalo Nation и Aqua Sciences.

Устройства, разработанные компанией Air2Water, дают от 3 до 38 литров воды в сутки, то есть являются не столь уж большими.

Принцип работы этих машин соответствует всем остальным, хотя есть и некоторые отличия: поначалу воздух проходит электростатические фильтры, которые задерживают около 93% взвешенных частиц. Конденсированная вода проходит освещение ультрафиолетовой лампой в течение 30 минут (на этом этапе умирает 99,9% микробов и бактерий), затем отделяется осадок, на угольных фильтрах задерживается около 99,9% вредных летучих органических веществ, а микропористая мембрана отделяет вирусы. Но и это ещё не всё – каждый час воду в контейнере снова обрабатывают ультрафиолетом. Основное производство аппаратов сосредоточено в Китае и Сингапуре, хотя доставка осуществляется по всему миру.

Aquair

Aquair – американское дочернее предприятие RG Global Lifestyles, появившееся на свет в 2004 г. Её конёк, пожалуй, в том, что кроме просто высасывания влаги из воздуха она специализируется ещё и на системах очистки питьевой воды. В результате получается пятиступенчатый фильтр (схема установки показана на предыдущей стр.).

Кстати, на сайте компании можно найти калькулятор, который позволяет приблизительно подсчитать расход воды на разные нужды в течение года.

Другие компании

Австралийская фирма AirtoH2O тоже делает воду из воздуха и гордится тем, что насобирала более 360 тысяч литров живительной влаги (о чём открыто сообщает на своём сайте). Её продукция почти ничем не отличается от других таких же мелких производителей: китайского Water Master и расположившегося в Техасе Aqua Maker.
Добавим, что о цене литра воды, полученной любой из установок, говорить сложно. Однако все производители заявляют о том, что у них низкие затраты энергии, а стоимость литра оценивается от 1 до 15 амер. центов.

Вообще, подсчёт таких значений – сложное дело, ведь стоимость литра драгоценной жидкости зависит от вместимости генератора (ежегодного выхода воды), а также от влажности и температуры воздуха за его бортом.
Отметим также, что существуют альтернативные методы получения воды из воздуха. Так, один из методов основан на интенсивном впитывании атмосферной влаги жидким хлоридом лития. Полученная смесь затем проходит несколько полупронецаемых мембран благодаря эффекту обратного осмоса, в результате чего вода отделяется от литиевой соли.

Основные же выводы таковы: направление это определённо перспективное и почти безвредное для окружающей среды. Однако вряд ли любая из существующих компаний сможет решить мировую проблему нехватки чистой питьевой воды. Отчасти из-за того, что недостаточно крупны пока что производители воды из воздуха. Кроме того, граждан развитых стран не так-то просто научить ценить природные ресурсы, а бедным странам вряд ли по карману обеспечить всех своих жителей удобным и достаточно простым источником воды в виде описанных генераторов. опубликовано

Присоединяйтесь к нам в

Имя изобретателя: Ладыгин А.В.
Имя патентообладателя: Общество с ограниченной ответственностью "Адекватные технологии"
Адрес для переписки: 119435, Москва, Новодевичий пр-д, д.2, кв.70, Ладыгину А.В.
Дата начала действия патента: 1999.08.05

Изобретение относится к способам автономного получения пресной воды питьевого качества из влаги окружающего атмосферного воздуха и может быть использовано в быту и для потребностей народного хозяйства. Техническим результатом изобретения является получение пресной воды при отсутствии или недоступности ее традиционных источников. Способ заключается в том, что формируют поток воздуха, содержащий пары воды, осуществляют искусственное охлаждение потока воздуха и конденсируют пары воды. Получаемые при этом пресную воду-конденсат подают в емкость для сбора воды, а охлажденный воздух - на конденсатор для обеспечения рабочего режима холодильного устройства. Сформированный поток воздуха пропускают через фильтр воздухозаборника в условиях окружающей среды с относительной влажностью от 70 до 100% и температурой от +15 до +50 o С, а затем через электростатическое поле. Получаемый охлажденный воздух через соединительную юбку подают на радиатор конденсатора, при этом объем проходящего через радиатор воздуха из условия 20 г влаги на 1 м 3 воздуха и среднесуточной производительности установки до 250 л/сутки лежит в пределах 12-13 тыс. м 3 в сутки.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к способам автономного получения пресной воды питьевого качества из влаги окружающего атмосферного воздуха и может быть использовано в быту для удовлетворения потребностей населения в очищенной питьевой воде, а также для потребностей народного хозяйства при ее промышленном использовании.

В настоящее время весьма актуальной является задача получения пресной воды при отсутствии или недоступности традиционных источников.

Одним из возможных методов решения проблемы является конденсация воды, содержащейся в атмосферном воздухе.

Так, известен способ и аппарат для удаления воды из воздуха, в котором воду удаляют из воздуха путем повторения четырехстадийного цикла. На первой стадии охлаждают конденсатор аккумуляции тепла холодным воздухом, поступаемым извне, и увлажняют реагент, увеличивающий гигроскопичность. На второй стадии удаляют воду из указанного реагента струей воздуха, нагретого солнечным излучением, и подводят его к конденсатору аккумуляции тепла. На третьей стадии охлаждают дополнительный конденсатор аккумуляции тепла воздухом, поступающим извне, и увлажняют реагент, увеличивающий гигроскопичность. На четвертой стадии удаляют воду из указанного реагента воздухом, нагретым солнечной энергией /патент Франции N 2464337, кл. E 03 B 3/28, 1981/.

Не умаляя достоинства данного способа и устройства для его осуществления, тем не менее необходимо отметить его более сложное исполнение.

Известен способ и устройство для извлечения воды из атмосферного воздуха, одним их которых является воздушно-водяной генератор по патенту США N 5203989 по кл. E 03 B 3/28, 1987.

Согласно данному патенту формируют поток воздуха, содержащего водяные пары, охлаждают его до температуры ниже точки росы, конденсируют водные пары в воду, а обезвоженный воздух выбрасывают в атмосферу.

Известное устройство содержит корпус, в котором установлена холодильная машина и средство транспортирования потока воздуха. Нижняя часть корпуса сообщена со сборником конденсата.

При прокачивании потока атмосферного воздуха, содержащего пары воды, происходит их конденсация на охлаждающем элементе холодильной машины и одновременное охлаждение потока воздуха, который выбрасывается в атмосферу.

Известный способ и устройство характеризуются низкой экономичностью использования холодопроизводительности холодильной машины, так как только незначительная ее часть используется для конденсации паров воды, особенно при малой влажности воздуха. При этом большая часть холодопроизводительности расходуется на охлаждение обезвоженного воздуха, выбрасываемого в атмосферу.

Известен способ извлечения воды из воздуха /WO, 93/04764, кл. E 03 B 3/28, 1993/, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха на одном участке второго потока, организуют теплопередачу между частями потока воздуха, находящимися по обе стороны от участка искусственного охлаждения, конденсируют пары воды в той части потока воздуха, температура которой ниже точки росы, и выбрасывают обезвоженный воздух в атмосферу.

В известном способе осуществляется однократное предварительное охлаждение входящего потока воздуха выходящим, что позволяет улучшить эффективность использования холодопроизводительности холодильной машины.

Одновременно сложная траектория движения потока воздуха создает большое газодинамическое сопротивление.

Известна установка для получения пресной воды из влажного воздуха, в работе которой используется солнечная энергия /DE 3313711, кл. E 03 B 3/28, 1984/.

За счет электроэнергии, получаемой от солнечных батарей, холодильный агрегат производит холод, который выделяется на теплообменнике-испарителе. Влажный воздух с помощью вентилятора продувается через воздуховод, в котором расположен испаритель. В результате контакта с поверхностью теплообменника-испарителя воздух охлаждается, содержащийся в нем пар становится насыщенным, частично конденсируется на поверхности теплообменника и стекает в водосборник.

Недостатками данной установки являются большие энергозатраты и низкая производительность.

Известна установка, в которой осуществляется аккумуляция холода для его использования в ночное время /EР 0430838, кл. E 03 B 3/28, 1991/.

В светлое время суток электроэнергия от солнечных батарей поступает на холодильный агрегат, который вырабатывает холод. С помощью вентиля холодильный агрегат подключается к термоизолированной емкости. Находящаяся в ней жидкость с помощью гидронасоса прокачивается через холодильный агрегат и охлаждается, в результате в термоизолированной емкости аккумулируется холод. Затем термоизолированная емкость с помощью вентиля отключается от холодильного агрегата и подключается к теплообменнику-конденсатору. Когда влажность воздуха достигает величины, близкой к 100%, включаются гидронасос и вентилятор. С их помощью холодная жидкость и влажный воздух пропускаются через конденсатор. Содержащийся в воздухе водяной пар конденсируется на его поверхности, а находящиеся в нем капли улавливаются каплеуловителем и захваченная влага стекает в водосборник.

Недостатком данной установки является необходимость расходования энергии и отсутствие автономности при работе установки.

Известно устройство для получения пресной воды, содержащее теплообменную поверхность, на которой конденсируется влага из наружного атмосферного воздуха и выпавший конденсат собирается в сосуде для сбора конденсата. Устройство содержит генератор энергии ветра для приведения в действие циркуляционной установки, отводящей тепло. Теплообменная поверхность и генератор энергии ветра расположены на плавучей опорной конструкции. Циркуляционная установка, отводящая тепло, имеет теплообменник, расположенный на определенном расстоянии ниже поверхности воды для использования холода глубинных слоев воды /заявка ФРГ N 3319975, кл. E 03 B 3/28, 1984/.

Недостатком этого устройства является наличие генератора энергии ветра, что приводит к сложности конструкции и снижает надежность действия, затрудняет обслуживание. Применение замкнутой системы циркуляции охлаждающей воды и расположение теплообменника в пределах глубины погружения плавучей опорной конструкции не позволяет обеспечить охлаждение циркулирующей воды до низких температур, что снижает эффективность действия устройства в целом и не позволяет обеспечить высокую его производительность.

Известно устройство для конденсирования росы, содержащее опору, на которой расположена конденсирующая поверхность. Поверхность электрически излирована от грунта, что обеспечивает создание на поверхности электростатического заряда. При определенных климатических условиях на поверхности конденсируется находящаяся в воздухе влага. Имеются сборник, в который с поверхности стекает конденсат, а также устройство для перекачивания конденсата в резервуар. В одной из конструкций конденсирующая поверхность выполнена в виде вертикального металлического листа, а сборником является канал вдоль кромки листа. Лист может поворачиваться вокруг опоры для установки по ветру. В другой конструкции конденсирующая поверхность выполнена в виде перевернутого конуса, разделенного на треугольные сегменты. Площадь поверхности может быть увеличена ребрами. Резервуар, который можно устанавливать под землей, может иметь пластмассовый мешок из проницаемого материала. Мешок надевают на нижний конец трубы подачи конденсата из сборника /GB 1603661, кл. E 03 B 3/28, 1981/.

Однако данное устройство недостаточно эффективно в эксплуатации ввиду большой его металлоемкости.

Наиболее близким техническим решением к заявленному по совокупности признаков является способ получения воды из воздуха, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и получаемую при этом пресную воду-конденсат подают в емкость для сбора воды /RU 2081256, кл. E 03 B 3/28, 1997/.

Не умаляя достоинства ближайшего способа и устройства для его осуществления, заявленный способ все же является наиболее промышленно применимым, поскольку обладает рядом преимуществ по сравнению с известными традиционными способами и установками для их осуществления для получения воды из воздуха, а именно:

Дает воду высокого (дождевого) качества, которая может долго храниться;

Обеспечивает экологическую чистоту эксплуатации;

Установка для осуществления способа транспортабельна, проста и долговечна в работе, имеет вес 60 кг, небольшие габариты и стоимость.

Задачей изобретения является получение пресной воды при отсутствии или недоступности традиционных источников конденсации воды, содержащейся в атмосферном воздухе.

Задача решается за счет того, что в способе получения воды из воздуха, заключающемся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и подают получаемые при этом пресную воду-конденсат - в емкость для сбора воды, а охлажденный воздух - на конденсатор для обеспечения рабочего режима холодильного устройства, сформированный поток воздуха пропускают через фильтр воздухозаборника в условиях окружающей среды с относительной влажностью от 70 до 100% и температурой от +15 до +50 o C, а затем через электростатическое поле получаемый охлажденный воздух через соединительную юбку подают на радиатор конденсатора, при этом объем проходящего через радиатор воздуха из условия 20 г влаги на 1 м 3 воздуха и среднесуточной производительности установки до 250 л/сутки лежит в пределах 12-13 тыс. м 3 в сутки.

Способ реализуется следующим образом: принудительно, например, вентилятором, формируют поток атмосферного воздуха, содержащего пары воды, который, пройдя через фильтр воздухозаборника и электростатическое поле с напряженностью электрического поля E=1,5 B, поступает в конденсатор, где охлаждается ниже точки росы. Полученная при этом пресная вода-конденсат стекает по поддону в емкость для сбора воды. Охлажденный воздух через соединительную юбку подается на радиатор конденсатора для обеспечения рабочего режима холодильного устройства.

Нормальная работа способа получения воды из воздуха происходит при следующих основных условиях окружающей среды:

Относительная влажность от 70 до 100%;

Температура от +15 до +50 o C.

Более эффективно получение воды из воздуха происходит в среде с повышенной абсолютной влажностью воздуха и значительным суточным перепадом температуры.

Предельными (нерабочими) условиями способа добычи воды из воздуха и установки для осуществления способа, при которых должна быть прекращена его эксплуатация, являются:

Понижение температуры окружающего воздуха ниже +15 o C;

Повышение температуры окружающего воздуха выше +50 o C;

Понижение влажности окружающего воздуха ниже 70% при +20 o C;

Повышение запыленности окружающего воздуха свыше 0,5 г/м 3 ;

Отклонение корпуса конденсатора от вертикали на угол свыше 5 o .

Если способ добычи воды происходит непосредственно у моря, в хвойном лесу или на цветочном лугу, то получаемая вода будет обладать целебными свойствами.

Минерализация получаемой воды достигается двумя путями. Простая минерализация - путем помещения куска известняка в поддон или емкость для сбора воды, с заменой известняка раз в пять лет. Сложная минерализация (для создания программируемого минерального состава) - путем ввода в конструкцию микропроцессора и емкостей с солями.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения воды из воздуха, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и подают получаемые при этом пресную воду-конденсат - в емкость для сбора воды, а охлажденный воздух - на конденсатор для обеспечения рабочего режима холодильного устройства, отличающийся тем, что сформированный поток воздуха пропускают через фильтр воздухозаборника в условиях окружающей среды с относительной влажностью от 70 до 100% и температурой от +15 до +50 o C, а затем через электростатическое поле, получаемый охлажденный воздух через соединительную юбку подают на радиатор конденсатора, при этом объем проходящего через радиатор воздуха из условия 20 г влаги на 1 м 3 воздуха и среднесуточной производительности установки до 250 л/сутки лежит в пределах 12 - 13 тыс.м 3 в сутки.

Принцип действия

ГВ представляет собой пирамидальный каркас с влагопоглощающим наполнителем. Пирамидальный каркас образован четырьмя стойками поз. 3, приваренными к основанию поз. 4, выполненною из металлического уголка.

В пространство между уголками основания вварена металлическая сетка поз. 15; снизу к основанию при помощи накладок поз. 6 крепится полиэтиленовый поддон поз. 5 с отверстием посередине.

Внутреннее пространство сетчатого каркаса плотно (но без деформации стенок) заполняется влагопоглощающим материалом. Снаружи на пирамидальный каркас надевается прозрачный купол поз. 1, который фиксируется при помощи четырех растяжек поз. 8 и амортизатора поз. 14. ГВ имеет два рабочих цикла: поглощение влаги из воздуха наполнителем; выпаривание влаги из наполнителя с последующей ее конденсацией на стенках купола.

С заходом солнца прозрачный купол поднимают, чтобы обеспечить доступ воздуха к наполнителю; наполнитель поглотает влагу всю ночь.

Утром купол опускается и герметизируется амортизатором; солнце выпаривает влагу из наполнителя, пар собирается в верхней части пирамиды, конденсат стекает по стенкам купола на поддон и через отверстие в нем наполняет водой подставленную емкость.

Изготовление генератора воды

Подготовку к изготовлению ГВ начинают со сбора наполнителя.

В качестве наполнителя используются обрезки газетной бумаги; бумагу от газет нужно брать свободную от типографского шрифта во избежание засорения получаемой воды соединениями свинца.

Работа по сбору бумаги займет немало времени, вот за это время изготавливаются остальные элементы ГВ.

Основание сваривается из металлических уголков с размерами полок 35x35 мм, снизу к нему привариваются четыре опоры поз. 10 из таких же уголков и восемь кронштейнов поз. 13. Кронштейны соединяются между собой стальными прутками поз. 17 длиной 930 мм. диаметр 10 мм.

Сверху на полки уголков приваривается металлическая сетка с размером ячеек 15x15 мм. диаметр проволоки сетки 1,5-2 мм.

Из стальной ленты вырезаются четыре накладки поз. 6. По отверстиям в накладках сверлятся отверстия диаметром 4,5 мм в уголках основания и нарезается резьба под винты ВМ 5; Затем основание устанавливают на место, определенное для ГВ на садовом участке, огороде и т.д.

Место нужно выбирать так, чтобы ГВ не затенялся деревьями и постройками. После выбора места опоры основания фиксируется в земле цементным раствором. Допускается к опорам приварить опорные пятаки диаметром 100 мм из стального листа толщиной 2 мм.

После этого в углы квадрата основания привариваются поочередно четыре стойки таким образом, стойки оказались длинной 30 мм оказались в центре основания на высоте примерно.

Материал поперечин такой же как у стоек.

Затем из полиэтиленовой пленки толщиной 1 мм вырезается поддон поз. 5; края поддона, которые окажутся под накладками, подворачивают для усиления места крепления. В центре поддона вырезают круглое отверстие диаметром 70 мм - для стока воды. Края отверстий также можно усилить путем приваривания дополнительной накладки из полиэтилена.

Далее производят фиксацию на стойках сетчатого каркаса, представляющего собой мелкоячеистую рыболовную сеть с размером ячеек 15x15 мм. Сеть подвязывается к стойкам и краям поддона из металлической сетки при помощи х/б тесьмы так. чтобы сеть была туго натянута между стоек.

Желательно также подвязать сеть и к поперечинам, поделив внутренний объем пирамиды на два отсека.

Перед подвязкой сети к последней стойке, отсеки (начиная с верхнего) получившегося сетчатого каркаса плотно заполняется скомканными обрезками газетной бумаги. Заполнение производить так, чтобы не оставалось свободного места внутри пирамиды и выступание сетчатых стенок было минимальным.

Затем приступают к изготовлению прозрачного купола.

Он выполнен из полиэтиленовой пленки, раскрой которой производится согласно чертежа поз. 1 и сваривается паяльником по плоскостям А, А1. Шов выполнять без перегрева, чтобы полиэтилен не становился ломким в месте сварки.

Для предотвращения нарушения целостности купола в вершине пирамиды ее накрывают своеобразной полиэтиленовой "шапочкой" - фрагмент В по чертежу поз. 1. Затем, предварительно надев фрагмент В на пирамиду, аккуратно надевают на каркас купол. Расправив купол, сваривают между собой края плоскостей С: получается своеобразная крыша.

Эксплуатация

С заходом солнца прозрачный купол подворачивают до уровня поперечин и фиксируют в таком положении растяжками, надев крюки на прутки поз. 17.

За ночь бумага вберет в себя влагу и, утром купол опускают, фиксируя его нижний край на основании амортизатором.

За день солнце раскалит пирамиду, влага из бумаги испарится, пар по мере остывания конденсируется на стенках в воду, которая стекает вниз. Воду набирают, подставив какую-либо емкость под отверстие в полиэтиленовом поддоне.

С заходом солнца цикл повторяют.