Чему равен теоретический максимальный кпд паросиловой установки. Циклы основных тепловых машин и установок. Идеальный цикл Отто

Прежде чем перейти к описанию термодинамических методов и приемов по увеличению КПД, введем некоторое вспомогательное понятие. Необходимость этого введения состоит в следующем. Дело в том, что η t , по определению, есть отношение «пользы» к «затратам». Практически все методы повышения КПД одновременно изменяют и числитель и знаменатель дроби η t . И поэтому возникает неопределенность в поведении всей дроби.

С другой стороны, этой неопределенности нет, если имеем дело с циклом Карно, так как изменение температуры источника теплоты Т 1 и стока теплоты Т 2 довольно однозначно говорит об изменении η t к. Кроме того, все термодинамические методы и приемы повышения КПД паросиловых установок не изменяют величину Т 2 , так как практически ее трудно изменить.

Итак, подвод теплоты в цикле Ренкина происходит по некоторой ломаной кривой (см. рис. 6.4 и диаграмму Т – s, процесс 4 – 5 – 1, р 1 = const).

Определение: средне интегральной температурой процесса подвода теплоты в паросиловом цикле называется

≡ (6.6)

Иными словами, <Т 1 > в математике называют средне интегральной величиной функции на каком-то интервале изменения аргумента. Тогда для любого цикла паросиловой установки эквивалентный цикл Карно будет иметь КПД, равный:

η t к = 1 – Т 2 /. (6.7)

Любое предложение по увеличению или изменению η t паросиловой установки будем оценивать по изменению .

3.1. Повышение температуры рабочего тела перед турбиной.

На рис. 6.6 представлена иллюстрация этого приема повышения термического коэффициента полезного действия.

Обращаем внимание, что количество «пользы», т.е. работы за цикл увеличилось с увеличением Т 1 , но одновременно увеличились потери теплоты в конденсаторе, увеличились затраты теплоты за цикл. Здесь наглядно видно, что у дроби η t увеличился и числитель и знаменатель, а результат неопределенен (см. (6.5)). Зато воочию видно, что увеличение Т 1 до Т 1 ΄ увеличивает . Следовательно, η t увеличивается с увеличением Т 1 .

Рис. 6.6. Иллюстрация метода повышения η t путем

увеличения температуры Т 1 пара перед турбиной.

Замечание. Производя увеличение Т 1 , мы сознательно не меняли все остальные параметры цикла Ренкина. Нельзя же изменять все сразу, чтобы выявить какую-то закономерность.

3.2. Повышение давления рабочего тела перед турбиной.

На рис. 6.7 представлена иллюстрация этого метода повышения η t .

Рис. 6.7. Иллюстрация метода повышения η t путем повышения

давления водяного пара перед турбиной.

Судя по рис. 6.7, трудно решить, увеличились или уменьшилась работа за цикл, зато потери теплоты в конденсаторе явно уменьшились. Если же использовать понятие , то из рис. 6.7 следует, что с увеличением р 1 величина тоже увеличилась, а температура Т 2 не изменилась. Следовательно, однозначно можно сделать вывод, что увеличение давления пара перед турбиной увеличивает термический коэффициент полезного действия η t .

Замечание. Повышение температуры Т 1 пара перед турбиной мало эффективно, так как изобары p = const довольно круто идут вверх в области перегретого водяного пара. Такова уж природа этого вещества.

Замечание. Оба метода повышения η t , показанных выше, «благославляются» термодинамикой. А практически увеличение температуры и давления водяного пара перед турбиной ограничивается набором термостойких и особо прочных материалов для изготовления и котельного агрегата и турбины. Здесь во весь свой грозный рост встает наука «Материаловедение».

Паросиловая установка (ПСУ) - это комплекс энергетического оборудования, в котором в качестве рабочего тела используется водяной пар. Известны различные циклы ПСУ, в том числе цикл Карно, имеющий, как показано в гл. 4, наибольший термический КПД из всех возможных циклов в заданном интервале температур. Преимущество водяного пара состоит именно в том, что к нему в процессе парообразования можно подвести теплоту по изотерме и отвести теплоту также по изотерме при конденсации. Если же процессы подвода теплоты не связаны с фазовыми превращениями, осуществить их строго при постоянных температурах технически очень сложно. Можно утверждать, что технически цикл Карно возможен только в области влажного пара.

Для этого жидкость, находящуюся в состоянии насыщения (т. 7, рис. 8.1), следует направить в парогенератор, в котором к ней подводится теплота, например, от продуктов сгорания органического топлива или выделяющаяся при ядерной реакции. В области влажного пара изотерма и изобара совпадают, поэтому изобарный по сути процесс кипения в парогенераторе происходит и при постоянной температуре. Из парогенератора сухой насыщенный пар (т. 2) направляется для адиабатного расширения до давления в конденсаторе

Рис. 8.1.

(т. 3 ) в паровой двигатель - поршневую паровую машину или паровую турбину. В конденсаторе от отработанного пара при постоянном давлении и постоянной температуре отводится теплота и пар конденсируется, но не полностью (т. 4). Конденсатор - это теплообменный аппарат, в котором по многочисленным трубам небольшого диаметра движется так называемая циркуляционная вода, отводящая теплоту, выделяемую паром при конденсации на наружной поверхности труб. Влажный пар после конденсатора поступает в паровой поршневой или лопаточный компрессор и адиабатно сжимается до состояния насыщенной воды в т. 1.

Термический КПД цикла Карно в области влажного пара

Этот КПД имеет наибольшую из возможных величину для любых циклов, осуществляемых в диапазоне температур Т { _ 2 и Г 3 _ 4 .

К сожалению, отношение нельзя уменьшить произвольным

образом с целью увеличения КПД. Для водяного пара естественным пределом для Т { _ 2 является Т кр = 647 К, а для температуры конденсации нижним пределом является температура окружающей среды, в которую должна отводиться теплота, - Г 3 _ 4 > 300 К. Таким образом,

Действительный эффективный КПД рассматриваемого цикла окажется существенно меньше, так как расширение и, особенно, сжатие влажного пара сопровождаются большими потерями энергии. Более того, машина для адиабатного сжатия влажного пара, которая должна работать сначала как компрессор, сжимая пар с относительно высокой степенью сухости, а затем как насос, должна иметь слишком сложную конструкцию и не может быть надежной и дешевой.

Следует отметить, что использование температур 7\_ 2 , близких к Т кр, приводит к уменьшению полезной работы, производимой 1 кг пара в цикле. Чтобы убедиться в этом, достаточно сравнить площади 1-2-3-4и Г-2"-3"-4" на рис. 8.1.

Отмеченные недостатки цикла Карно органически ему присущи и препятствуют его практическому использованию. В то же время небольшие усовершенствования рассмотренного цикла, предложенные Уильямом Джоном Макуорном Ренкиным (1820-1872), превращают его в цикл, при помощи которого вырабатывается на тепловых и атомных электростанциях более 80% всей производимой на Земле электроэнергии.

К. п. д. цикла Ренкина даже в установках с высокими параметрами пара не превышает 50%. В реальных установках из-за наличия внутренних потерь в турбине значение к. п. д. еще меньше.

На величины энтальпий, входящих в выражение (9) оказывают влияние три параметра рабочего тела –– начальное давление р 1 и начальная температура Т 1 перегретого пара на входе в турбину и конечное давление р 2 на выходе из турбины. Это приводит к увеличению теплоперепада и как следствие этого, к увеличению удельной работы и к. п. д. цикла.

Кроме изменения параметров пара повысить экономичность паросиловых установок можно за счет усложнения схем самой установки.

На основании выше сказанного выявляются следующие пути повышения термического к. п. д.

1. Повышение начального давления р 1 при неизменных параметрах Т 1 и р 2 (рис. 15, а ). На диаграмме показаны циклы Ренкина при максимальных давлениях р 1 и р 1а > р 1 . Сопоставление этих циклов показывает, что с увеличением давления до р 1а теплопререпад имеет большее значение, чем , а количество подводимой теплоты уменьшается. Такое изменение энергетических составляющих цикла с ростом давления р 1 увеличивает термический к. п. д. Этот метод дает значительное повышение эффективности цикла, но в результате повышения р 1 (давление в паросиловых установках может достигать до 30 ата) увеличивается влажность пара, выходящего из турбины, что вызывает преждевременную коррозию лопаток турбины.

2. Увеличение начальной температуры Т 1 при неизменных параметрах р 1 и р 2 (рис. 15, б ). Сопоставляя циклы в диаграмме при температурах Т 1 и Т 1а > Т 1 можно увидеть, что разность энтальпий увеличивается в большей степени чем разность , так как изобара протекает более круто, чем изобара . При таком изменении разности энтальпий с ростом максимальной температуры цикла термический к. п. д. возрастает. Недостатком этого метода является то, что для пароперегревателя требуется жаропрочный металл, температура перегретого пара может достигать до 650 °С.

3. Одновременное повышение давления р 1 и температуры Т 1 при постоянном давлении р 2 . Повышение как р 1 так и Т 1 увеличивает термический к. п. д. Влияние их на влажность пара в конце расширения противоположно, с повышением р 1 она возрастает, а с увеличением Т 1 –– уменьшается. В конечном итоге состояние пара будет определяться степенью изменения величин р 1 и Т 1 .

4. Понижение давление р 2 при постоянных параметрах Т 1 и р 1 (рис. 15, в ). С понижением р 2 увеличивается степень расширения пара в турбине и техническая работа возрастает ∆l = l a – l . При этом количество отводимой теплоты меньше, чем (изобара при меньшем давлении более пологая), а количество подводимой теплоты возрастает на величину . В результате термический к. п. д. цикла увеличивается. Понижая давление р 2 можно достигнуть на выходе из конденсатора температуры равной температуре окружающей среды, но при этом в конденсационном устройстве придется создавать вакуум, так как температуре соответствует давление р 2 = 0,04 ата.


5. Использование вторичного (промежуточного) перегрева пара (рис. 15, г ). На диаграмме прямая 1 2 показывает расширение пара до некоторого давления р 1а в первом цилиндре двигателя, линия 2–1 а –– вторичный перегрев пара при давлении р 1а и прямая 1 а –2 а –– адиабатное расширение пара во втором цилиндре до конечного давления р 2 .

Термический к. п. д. такого цикла определяется по выражению

Применение вторичного перегрева пара приводит к снижению влажности пара на выходе из турбины и к некоторому увеличению технической работы. Повышение к.п.д. в этом цикле незначительное, всего 2–3 %, и такая схема требует усложнения конструкции паровой турбины.

6. Применение регенеративного цикла . В регенеративном цикле питательная вода после насоса протекает через один или несколько регенераторов, где нагревается паром, частично отбираемым после расширения его в некоторых ступенях турбины (рис. 16).

Рис. 15. Пути повышения термического к.п.д. цикла Ренкина

Рис. 16. Схема паросиловой установки, работающей

по регенеративному циклу:

1 –– котел; 2 –– пароперегреватель; 3 –– паровая турбина; 4 –– электрогенератор; 5 –– охладитель-конденсатор; 6 –– насос; 7 –– регенератор; α –– доля отбора пара

Количество отобранного пара будет определяться из уравнения теплового баланса для регенератора

где –– энтальпия конденсата при конечном давлении пара р 2 ; –– энтальпия пара, отбираемого из турбины; –– энтальпия конденсата при давлении отбора пара.

Полезная работа 1 кг пара в турбине будет определяться по формуле:

Количество теплоты затраченной на 1 кг пара, составляет

Тогда термический к.п.д. в регенеративном цикле будет найден

.

Подробное исследование регенеративного цикла показывает, что его термический к.п.д. всегда больше термического к.п.д. цикла Ренкина с теми же начальными и конечными параметрами. Увеличение к.п.д. при использовании регенерации составляет 10–15 % и возрастает с увеличением количеств отбора пара.

7. Применение теплофикационного цикла . В теплофикационном цикле утилизируется теплота, отдаваемая паром охлаждающей воде, которая обычно используется в отопительных системах, в системах горячего водоснабжения и для других целей. При этом теплота q 1 , подводимая к рабочему телу, может в разной степени перераспределяться дл получения технической работы и теплоснабжения. В теплофикационном цикле (рис. 17) часть электроэнергии недорабатывается, так как часть теплоты пара отбираемого из турбины расходуется у потребителя.

Рис. 17. Схема паросиловой установки, работающей по

теплофикационному циклу:

1 –– котел; 2 –– пароперегреватель; 3 –– паровая турбина; 4 –– электрогенератор; 5 –– охладитель-конденсатор; 6 –– насос; 7 –– потребитель теплоты

Количество теплоты, полученное рабочим телом, частично превращается в полезную работу лопаток турбины , а частично затрачивается для целей теплоснабжения у потребителей . Поскольку и та и другая работы являются полезными, то термический к. п. д. теряет свой смысл.

К.п.д. теплофикационного цикла будет определяться

.

Так как в теплофикационном цикле вырабатывается два вида продукции (электроэнергия и теплота), то приходится различать внутренний КПД по выработке теплоты и средневзвешенный КПД по выработке электроэнергии и теплоты. Каждый из них равен единице, поскольку в пределах цикла потерь нет.

В реальности к.п.д. теплофикационного цикла не может быть равен единице, так как всегда существуют механические потери в турбине и гидравлические потери в системах теплоснабжения.

ПАРОСИЛОВОЙ УСТАНОВКИ

Паросиловые установки (ПСУ) предназначаются для получения электрической энергии и водяного пара, идущего на производственные нужды промышленных предприятий. В настоящее время все крупные химические заводы и комбинаты имеют свои собственные ПСУ.

На рис.20 представлена принципиальная схема паросиловой установки. ПСУ состоит из парового котла (1,1"), паровой турбины (2), конденсатора (3) и питательного насоса (4). Паровой котел является сложным инженерным сооружением. На схеме условно изображены лишь два его элемента – барабан котла (1) и пароперегреватель (1").

Рис. 20. Принципиальная схема паросиловой установки

Работа установки состоит в следующем. Питательная вода (конденсат и вода, возвращающаяся с предприятия) насосом (4) нагнетается в барабан парового котла (1). В барабане за счет химической теплоты топлива, которое сжигается в топке котла (топка на рис. 3 не показана), а в некоторых случаях за счет энергетического потенциала горючих или высокотемпературных вторичных энергоресурсов вода при постоянном давлении превращается во влажный насыщенный пар (Х = 0,9 – 0,95). Затем влажный насыщенный пар поступает в пароперегреватель котла (1"), где перегревается до заданной температуры. Перегретый пар направляется в паровую турбину (2). Здесь он адиабатно расширяется с получением полезной работы, которая с помощью генератора трансформируется в электрическую энергию. Современные турбины имеют ряд отборов, через которые пар направляется на технологические нужды цехов промышленного предприятия. После турбины отработанный пар направляется в конденсатор (3). Конденсатор представляет из себя обычный кожухотрубный теплообменник, основное назначение которого состоит в создании вакуума за турбиной. Это приводит к повышению теплопадения в турбине, что повышает экономичность цикла ПСУ. В конденсаторе за счет отвода теплоты от отработанного пара к охлаждающей воде он конденсируется. Полученный конденсат насосом (4) вновь подается в барабан котла.

Рис. 21. Цикл П.С.У. в Р – υ и Т – S диаграммах

На рис. 21 представлен цикл ПСУ в диаграммах Р – υ и Т – S. В этих диаграммах линия 1–2–3–4 соответствует изобарному процессу получения перегретого пара в паровом котле. Участок 1-2 характеризует процесс нагревания питательной воды до температуры кипения, участок 2-3 соответствует процессу парообразования, т.е. превращение воды в пар, участок 3-4 характеризует процесс перегрева пара. Линия 4-5 отражает адиабатный процесс расширения пара в турбине. Отрезок 5-6 – изобарный процесс конденсации пара в конденсаторе. Линия 6-1 характеризует процесс повышения давления питательной воды в насосе. Процесс повышения давления воды в насосе практически протекает при постоянной температуре и без теплообмена с окружающей средой. Кроме того, учитывая, что жидкости практически не сжимаются, это можно считать и изохорным. При этих условиях процесс 6-1 протекает при q = 0, Т = const, υ = Р – υ и Т – S и S = Р – υ и Т – S. Поэтому линия 6-1 в Т - S диаграмме трансформируется в точку.

При анализе циклов паросиловых установок вводятся следующие понятия:

1. Техническая работа турбины . Под технической работой турбины понимают работу всех термодинамических процессов цикла.

Для изобарного процесса 1-4 имеем:

(7.12)

В процессе адиабатного расширения пара в турбине:

При изобарном процессе конденсации в конденсаторе:

(7.14)

Для процесса 6-1, характеризующего техническую работу насоса при q = 0,

Т = const , υ = const и S = const, получаем

Следовательно:

2. Работа цикла . Работа цикла определяется как разность между технической работой Трубины и работой затрачиваемой насосом.

Оценка эффективности цикла ПСУ осуществляется с помощью коэффициентов полезного действия цикла. Различают термический и внутренний относительный КПД цикла. Под термическим коэффициентом полезного действия цикла понимают отношение работы цикла к теплоте, подведенной от верхнего источника. Работа цикла определяется по формуле (7.17). Верхним источником теплоты в данном случае являются дымовые газы, получаемые в процессе горения топлива, или высокотемпературные В.Э.Р.

Теплота от верхнего источника к рабочему телу (q 1 ) подводится в паровом котле в процессе 1-2-3-4. Эта теплота численно равна:

В этом случае термический КПД цикла ПСУ можно записать следующим образом:

(7.19)

На практике при анализе работы ПСУ часто используют формулу, не учитывающую работу насоса, ввиду ее малости по сранению с технической работой цикла:

(7.20)

где Δh – теплопадение в турбине.

В действительном цикле ПСУ адиабатный процесс расширения в соплах паровой турбины является необратимым. Необратимость связана с возрастанием энтропии, поэтому действительное теплопадение Δh д меньше теоретического Δh . На рис. 22 представлено теоретическое и действительное теплопадение в паровой турбине в h - S диаграмме.

Рис. 22. Графическое представление теплопадения в турбине на h – S диаграмме.

Термический КПД реального цикла ПСУ определится по выражению.

Энергетический баланс паросиловой станции с турбиной показан на рис. 519. Он является примерным; к. п. д. паросиловой станции может быть и больше (до 27%). Потери энергии, которые имеют место при работе паросиловой станции, можно разделить на две части. Часть потерь обусловлена несовершенством конструкции и может быть уменьшена без изменения температуры в котле и в конденсаторе. Например, устроив более совершенную тепловую изоляцию котла, можно уменьшить потери теплоты в котельной. Вторая, значительно большая часть - потеря теплоты, переданной воде, охлаждающей конденсатор, оказывается при заданных температурах в котле и в конденсаторе совершенно неизбежной. Мы уже указывали (§ 314), что условием работы теплового двигателя является не только получение некоторого количества теплоты от нагревателя, но и передача части этой теплоты холодильнику.

Большой научный и технический опыт по устройству тепловых двигателей и глубокие теоретические исследования, касающиеся условий работы тепловых двигателей, установили, что к. п. д. теплового двигателя зависит от разности температур нагревателя и холодильника. Чем больше эта разность, тем больший к. п. д. может иметь паросиловая установка (конечно, при условии устранения всех технических несовершенств конструкции, о которых упоминалось выше). Но если разность эта невелика, то даже самая совершенная в техническом смысле машина не может дать значительного к. п. д. Теоретический расчет показывает, что если термодинамическая температура нагревателя равна , а холодильника , то к. п. д. не может быть больше чем

Рис. 519. Примерный энергетический баланс паросиловой станции с турбиной

Так, например, у паровой машины, пар который имеет в котле температуру 100 (или 373 ), а в холодильнике 25 (или 298 ), к. п. д. не может быть больше , т. е. 20% (практически, вследствие несовершенства устройства, к. п. д. такой установки будет значительно ниже). Таким образом, для улучшения к. п. д.. тепловых машин нужно перейти к более высоким температурам в котле, а следовательно, и к более высоким давлениям пара. В отличие от прежних станций, работавших при давлении 12-15 атм (что соответствует температуре пара 200 ), на современных паросиловых станциях начали устанавливать котлы на 130 атм и более (температура около 500 ).

Вместо увеличения температуры в котле можно было бы понижать температуру в конденсаторе. Однако это оказалось практически неосуществимым. При очень низких давлениях плотность пара очень мала и при большом количестве пара, пропускаемого за одну секунду мощной турбиной, объем турбины и конденсатора при ней должен был бы быть непомерно велик.

Кроме увеличения к. п. д. теплового двигателя, можно пойти по пути использования «тепловых отбросов», т. е. теплоты, отводимой водой, охлаждающей конденсатор.

Рис. 520. Примерный энергетический баланс ТЭЦ

Вместо того чтобы спускать нагретую конденсатором воду в реку или озеро, можно направить ее по трубам водяного отопления или использовать ее для промышленных целей в химической или текстильной промышленности. Можно также производить расширение пара в турбинах только до давления 5-6 атм. Из турбины при этом выходит еще очень горячий пар, могущий служить для ряда промышленных целей.

Станция, использующая отбросы теплоты, снабжает потребителей не только электрической энергией, полученной за счет механической работы, но и теплотой. Она называется теплоэлектроцентралью (ТЭЦ). Примерный энергетический баланс ТЭЦ представлен на рис. 520.