Очень прочный материал отличающийся легкостью. Самые твердые материалы: виды, классификация, характеристики, интересные факты и особенности, химические и физические свойства. Чудеса живой природы

Самый легкий материал в мире January 8th, 2014

Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.

Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.

Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3 . А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит , плотность которого составляет 0.18 мг/см3.

Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материала ученые использовали один из самых удивительных и тонких материалов на сегодняшний день — графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.

Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские ученые использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.

«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» — рассказывает профессор Чэо, — «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».

Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.

Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.

Листовые строительные материалы представляют собой плиты, которые имеют определенные размеры, выполненные из разных материалов путем применения различных технологий. Применяются листовые материалы как при строительстве, так и в отделочных работах. Помимо этого, листовой материал может быть использован для возведения перегородок или для воплощения разнообразных идей дизайнера. Работа с данным строительным материалом не представляет особой сложности, а правильная его обработка обеспечит минимальное количество мусора в процессе выполнения строительных работ. Монтаж листов к потолку или стене осуществляется с применением специальной обрешетки, которая изготавливается из металлического профиля или деревянного бруса. Крепеж выполняют на саморезы. Укладка листовых материалов на пол выполняется при помощи специального строительного клея.

Ниже рассмотрены основные виды листовых строительных материалов.

Древесноволокнистая плита )

Древесноволокнистая плита ) или оргалит - спрессованные под воздействием высокой температуры опилки и мелкая деревянная стружка с применением специальной добавки для склейки. Добавка служит связующим компонентом, содержание которой довольно низкое. Данный фактор относит ДВП к экологически чистым строительным материалам. ДВП относится к материалам, которые могут использоваться в помещениях с невысокой влажностью. Его нельзя применять во влажных помещениях. Наиболее часто применяют для выравнивания пола и стен, а так же при производстве мебели. Листы имеют толщину 3,2-5 мм.

Древесно-слоистая плита (фанера) - материал, имеющий в основе деревянный шпон. Особенность этого вида листового материала в том, что, слои шпона укладываются перпендикулярно, относительно друг друга, и соединяются путем прессования с введением связующего компонента. Материал имеет высокую прочность, гигроскопичен. Используется для изготовления мебели, строительстве стен и основы под напольное покрытие. Фанерный лист имеет толщину от 4 до 24 мм.

Плита ориентировано -стружечная (ОSB )

Плита ориентировано -стружечная (ОSB ) - изготавливается из тонких щепок длинной до 150 мм путем прессования, с введением дополнительных компонентов. В качестве компонентов выступают смолы, борная кислота, синтетический воск. Относится к довольно прочным видам листовых стройматериалов. Используют при выполнении кровельных работ, при строительстве каркасно-щитовых домов. Один лист имеет толщину 9-10 мм. ОСБ бывают трех типов: лакированная, ламинированная и шпунтированная.

Гипсокартонный лист )

Гипсокартонный лист ) - самый распространенный листовой материал, основой которого служит гипс, оклеенный с двух сторон картоном. Применяют его как в сфере строительства, так и при отделке отдельных помещений. Лист имеет толщину 7-12 мм. Выделяют несколько видов гипсокартонных листов: влаго-огнестойкий (ГКЛВО), огнестойкий (ГКЛО), влагостойкий (ГКЛВ), обычный (ГКЛ). Наиболее часто применяют при строительстве перегородок и подвесных конструкций потолка, а так же для выравнивания стен.

Гипсоволокнистый лист )

Гипсоволокнистый лист ) - строительный материал, в состав которого входит гипс с распущенной целлюлозной макулатурой. Отличается от ГКЛ повышенной прочностью. Сфера применения - сухая стяжка пола, создание межкомнатных перегородок, подвесного потолка. ГВЛ прост в применении и легко поддается финишной обработке. Лист имеет толщину 10-12,3 мм.

Стекломагниевый лист )

Стекломагниевый лист ) - листовой отделочный материал, в основе которого используют магнезиальное вяжущее. Высокий показатель прочности, звукоизоляции, эластичен. Относится к огнеупорным листовым материалам. Поддается финишной и механической обработке. Применяют во влажных помещениях в качестве основы под напольное покрытие, в качестве облицовочного материала для потолка, при выравнивании стен, для устройства межкомнатных перегородок.

Плита древесноволокнистая (МДФ)

Плита древесноволокнистая со средней плотностью (или аббревиатура от Medium Density Fibreboard) - изготавливается прессованием древесной стружки (сухой метод) под высоким давлением и температурой. В качестве клеевого состава применяются карбидные смол. Используют при отделки мебели, устройстве межкомнатных дверей, в качестве декоративной отделки.

Плита древесно -стружечная )

Плита древесно -стружечная ) - материал, изготовленный из стружки древесины крупного размера, соединенный при помощи клея, под воздействием пресса. Данный строительный материал легко обрабатывается, а также имеет небольшую стоимость, в сравнение с другими листовыми материалами. Из ДСП изготавливают, панели для отделки внутри помещения. Минусом является то, что при монтаже достаточно сложно использовать крепёжные элементы. Саморезы и шурупы прикручиваются плохо.

Гипсостружечная плита )

Гипсостружечная плита ) — прочный материал, изготовленный прессованием гипса с древесной стружкой без применения клея и смол. Полусухой способ производства включает в себя добавление воды и равномерное нанесение стружки по всей площади поверхности. Это выполняется с целью увеличения несущей способности конструкции. ГСП относится к экологичным, безопасным строительным материалам. Плотность листа составляет 1250 кг/м3. Применяют при облицовки внутренних стен, потолка, пола, устройстве межкомнатных перегородок. Сочетание гипса и древесной стружки в ГСП обеспечивает материалу такие свойства, как: хорошая звукоизоляция (до 32-35 дБ), поддержание баланса влагообмена в помещении, удароустойчивость, негорючесть, высокопрочность. Лицевая сторона плиты имеет светлую и гладкую поверхность. Толщина листа 8-12 мм. Различают следующие типы ГСП: обычная и влагостойкая (ГСПВ).

Читайте подробнее про ГСП: Применение, особенности работы и характеристики гипсостружечных плит (ГСП)

Цементно -стружечная плита )

Цементно -стружечная плита ) - высокопрочный, влагоустойчивый строительный продукт, изготавливается путем соединения цемента с тонкой древесной стружкой. Дополнительным компонентом является химическая добавка, которая снижает вредное воздействие стружки на цемент. Данный материал отличается своей долговечностью, имеет хорошие звуко- и теплоизоляционные свойства. Перечисленные факторы позволяют применять плиты в качестве материала для обшивки стен, как внутри, так и снаружи здания в различных условиях климата. ЦСП легок в работе и обработке, как и дерево. Правда в отличие от последнего ЦСП не подвержен влиянию насекомых, грызунов, грибковых бактерий. Цемент обеспечивает хорошую сопротивляемость воспламенению. А древесная стружка не дает плите растрескиваться от мороза или высокой температуры воздуха.

Аквапанель

Аквапанель - влагостойкий, листовой, композитный материал, основой которого служит цемент (без примеси асбеста) и сетчатая стеклоткань. В качестве добавки применяется минеральный заполнитель - керамзит мелкой фракции, выполняющий роль «сердечника». Стеклоткань укладывается равномерным слоем на всю поверхность панели. Края строительного материала имеют округлую форму. Продукт относится к экологически безопасным, за счет отсутствия в составе асбеста и органических веществ. Сфера применения - выполнение отделочных работ внутри и снаружи помещения (фасады, облицовки, перегородки). Плита имеет высокую устойчивость к механическим воздействиям и высоким показателям влажности воздуха, поэтому в процессе эксплуатации не будет деформироваться. Материал не подвержен гниению. Края аквапанели обрезаются, а кромки усиливаются. Толщина листового материала составляет 12,5 мм.

Читайте подробнее про Аквапанели: Применение аквапанелей, особенности работы и технические характеристики

Асбестовый картон (Асбокартон) - строительный материал, который изготавливается на основе волокна хризолитового асбеста, с добавлением связующего компонента (крахмала). Данный вид листового материала относится к огнестойким, обладает изоляционными свойствами, высокой механической прочностью, щелочестойкостью, долговечностью. Листы асбокартона применяются для огнезащиты и теплоизоляции, для уплотнения стыков аппаратуры и коммуникаций. Выделяют три его типа: КАОН-1, КАОН-2 — общего назначения; КАП — прокладочный. Способ укладки на изолируемую поверхность не требует специальных навыков работы и использования специальных инструментов. Толщина листового материала составляет 1,3-10 мм в зависимости от типа.

Асбестоцементная электротехническая доска ) - листовой материал, в основе которого цемент. Представляет собой прочную доску или плиту. Этот вид листового материала имеет повышенную термостойкость и стойкость к высокому напряжению. Используется АЦЭИД в качестве отделочного материала для печей, для изготовления электрических щитов, ограждений электропечей и т.п. То есть там, где необходима высокая прочность и защита от высокого напряжения. Также используют при отделке фасада здания, создание строительных перегородок. Используется как звукоизоляционный материал. Почти не пропускает воду и электрический ток. Используется как основание для электрических машин и аппаратов, при производстве тигельных и индукционных печей, корпусов для дугогасильных камер. Толщина ацеида может быть от 6 до 40 мм. Требуется специальный инструмент для его резки.

Читайте подробнее про Ацэид: Свойства и область применения асбестоцементной доски (Ацэид)

Эмалированное стекло (ЭМАЛИТ , СТЕМАЛИТ )

Эмалированное стекло (ЭМАЛИТ , СТЕМАЛИТ ) - устойчивое к агрессивным средам (кислотам, щелочам) стекло, покрытое с одной стороны эмалированной краской. Краска различного цвета наносится на стеклянную поверхность, после чего выполняется ее закалка. Продукт не подвержен воздействию высокой влажности, имеет физическую стойкость к стираниям (царапинам), обладает механической прочностью. Довольно широко применяется в фасадном и интерьерном остеклении, в качестве функционального или декоративного элемента. Используется в облицовке зданий (внутри и снаружи); производстве оборудования, мебели, стеновых панелей, цельностеклянных дверей; устройство межкомнатных перегородок.

Читайте подробнее про эмалированное стекло: Эмалированное стекло (Стемалит)

Заключение. В статье представлены основные виды и характеристики листовых материалов применяемых при строительстве и ремонте, а также указана область наибольшего его применения и способы обработки каждого из описанных выше видов.


Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.


Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.

Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3 . А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит , плотность которого составляет 0.18 мг/см3.

Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материала ученые использовали один из самых удивительных и тонких материалов на сегодняшний день - графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.

Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские ученые использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.


«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» - рассказывает профессор Чэо, - «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».

Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.


Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз - крепчайший минерал, но он далеко не самый крепкий.

Твёрдость - не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие - способствовать эластичности. Хотите знать больше? Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Бриллиант во всей своей красе

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 - самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.

Паутина, способная остановить аэробус

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.

Аэрографит в обычной посылке

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.

Стекло во время краш-теста

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.

Вольфрамовое сверло

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.

Карбид кремния в виде кристаллов

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.

Молекулярная структура нитрида бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).

Кабель из Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!

Трубка сплава

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.

Аморфные металлы легко меняют форму

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.

Будущая бумага может быть тверже алмазов

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.

Раковина блюдца

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.

Ступень ракеты, в которой многие узлы содержат мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.

Кристалл осмия

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).

Кевларовая каска остановила пулю

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар - это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.

Трубы из материала Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.

Гибкий экран из графена

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!

Новая технология, способная перевернуть наше представление о прочности

Эта нанотехнология изготовлена из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.

в сателлитах регулярно применяются сплавы из микрорешётки

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.

Модель нанотрубок

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.

Фантастический аэрографен сложно даже описать!

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Главный корпус политеха штата Массачусетс

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.

Молекулярная структура карбина

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.

место рождения нитрида бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.

Метеориты - главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Прочные материалы имеют широкий спектр использования. Есть не только самый твёрдый металл, но и самая твердая и прочная древесина, а так же самые прочные искусственно созданные материалы.

Где используют самые прочные материалы?

Сверхпрочные материалы применяют во многих сферах жизни. Так, химики Ирландии и Америки разработали технологию, посредством которой производится прочное текстильное волокно. Нить этого материала в диаметре – пятьдесят микрометров. Она создана из десятков миллионов нанотрубок, которые с помощью полимера скреплены между собой.

Прочность этого электропроводящего волокна на разрыв выше прочности паутины паука-кругопряда в три раза. Полученный материал используется для изготовления сверхлегких бронежилетов и спортивного инвентаря. Название еще одного прочного материала – ONNEX, созданного по заказу Министерства обороны США. Кроме применения его при производстве бронежилетов, новый материал можно так же использовать в системах летного контроля, сенсорах, двигателях.


Существует разработанная учеными технология, благодаря которой прочные, твердые, прозрачные и легкие материалы получают посредством преобразования аэрогелей. На их основе можно производить облегченные бронежилеты, броню для танков и прочные строительные материалы.

Новосибирские ученые изобрели плазменный реактор нового принципа, благодаря которому можно производить нанотубулен – сверхпрочный искусственный материал. Этот материал открыли еще двадцать лет назад. Он представляет собой массу эластичной консистенции. Она состоит из сплетений, которые невозможно увидеть невооруженным глазом. Толщина стенок данных сплетений – один атом.


То что атомы как бы вложены друг в друга по принципу «русской матрешки», делает нанотубулен наиболее прочным материалом из всех известных. При добавлении этого материала в бетон, металл, пластик, значительно усиливаются их прочность и электропроводность. Нанотубулен поможет сделать машины и самолеты более прочными. Если же новый материал придет в широкое производство, то очень прочными могут стать дороги, дома, техника. Разрушить их будет очень сложно. Нанотубулен до сих пор не был внедрен в широкое производство из-за очень высокой себестоимости. Однако новосибирским ученым удалось значительно снизить себестоимость этого материала. Теперь нанотубулен можно производить не килограммами, а тоннами.


Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2. Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3. Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.


Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.


Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа. Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.


Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет. Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом..

Самый прочный материал во Вселенной

Наиболее прочным и одновременно легким материалом нашей Вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.


В скором времени графен покинет научные лаборатории. Все ученые мира говорят сегодня о его уникальных свойствах. Так, несколько грамм материала будет достаточно для покрытия целого футбольного поля. Графен очень гибкий, его можно складывать, изгибать, сворачивать рулоном.

Возможные сферы его использования – солнечные батареи, сотовые телефоны, сенсорные экраны, супербыстрые компьютерные чипы.
Подпишитесь на наш канал в Яндекс.Дзен