Сдвоенные динамические. Акустическая система «по Чебышеву» (на сдвоенных динамиках). Делаем сами акустическую колонку со сдвоенной головкой

14.09.2012

Делаем сами акустическую колонку с двумя НЧ - СЧ головками

Опубликован частный материал про то как собрать акустическую систему с двойными СЧ или НЧ динамиками. Все описано простым языком для начинающих, но наше мнение остаеться тоже, что и было, лучше купите у нас.

Делаем сами акустическую колонку со сдвоенной головкой

Сдвоенная головка обладает некоторыми преимуществами по сравнению с одиночной. Например, у нее более гладкая амплитудно-частотная характеристика, нелинейные искажения меньше, нужный объем ящика акустического оформления тоже меньше.

Амплитудно-частотная характеристика сглаживается, так как головки, из которых состоит сдвоенная головка, взаимно демпфируются. У каждой одиночной головки в пределах допускаемых отклонений есть своя неравномерность АЧХ, обусловленная технологией производства, так что на АЧХ частоты пиков и провалов не совпадают. Часть этих пиков с провалами в сдвоенной головке взаимно компенсируются. Смотреть схему на рисунке №1.

Здесь нелинейные искажения уменьшаются, ведь сдвоенная головка - это симметричная электро-механоакустическая система, в отличие от одиночной. Из-за этого с ее обеих сторон сопротивление воздушной среды почти одинаковое. Оно обусловлено конструктивными особенностями головки, свойствами материала. У головок некоторых типов отсутствует различие гибкости подвеса при движении диффузора вперед или назад. В сдвоенной головке также не проявляется асимметрия распределения магнитной индукции, которая в зазоре магнитной системы и отрицательно влияет на уровень 2-й гармоники.

В низкочастотном звене требуется одна мощная сдвоенная головка. Ее можно поместить на горизонтальной доске, под которой расположен рупор, что направляет звук к слушателю и согласовывает механическое сопротивление с воздушной средой подвижной системы головки.

Объем ящика уменьшается, ведь результирующая гибкость подвеса такой головки снижается вдвое по сравнению с одиночной. А масса подвижной системы сдвоенной головки увеличивается в такое же количество раз. Именно поэтому не изменяется частота основного механического резонанса.

Может показаться, что увеличение числа головок, которые работают на одно отверстие АС, еще в большей степени позволяет уменьшить ее габариты. Но практически не получается сблизить головки настолько, чтобы геометрические размеры не отразились на фазовых сдвигах волн звука, которые излучаются крайними головками. Длина пути распространения волн, если считать от крайней внутренней до крайней наружной головки, соизмерима с длинами излучаемых волн. А это в итоге приводит к тому, что звуковые сигналы вычитаются и искажаются. Кстати, именно поэтому нельзя сдваивать среднечастотные и высокочастотные головки. К тому же, в данном случае станет ощутимым снижение КПД.

Итак, предлагаем читателям АС - громкоговоритель-фазо-инвертор, полезный внутренний объем которого - 50 л. Здесь применена сдвоенная головка из 6ГД 2 как низкочастотный излучатель. А как средне- и высокочастотный используются, соответственно, 15ГД-11, 6ГД-13. Вы также можете подобрать и другие динамики . Установлена сдвоенная головка на наклонной доске, ведь такое расположение доски со сдвоенной головкой позволяет рациональнее использовать объем ящика, а это уже позволяет уменьшить габариты АС и ее массу.

Главные технические характеристики АС таковы:

Номинальная мощность равна 12 Вт

Паспортная мощность - не менее 30 Вт

Номинальный диапазон частот - 30-18000 Гц

Номинальное электрическое сопротивление здесь 4 Ом.

Так как применяются высокоэффективные низкочастотные головки 6ГД-2, то при небольшой номинальной мощности (а именно, 12 Вт) громкость звучания не уступает промышленным АС, мощность которых 30 Вт. А ели говорить о качестве звучания, то большинство людей предпочитает АС, которая описывается ниже. Принципиальная схема АС изображена на рисунке № 2, а конструкция изображена на рисунке №3.

Ящик у АС (3) сделан из древесно-стружечной плиты, толщина которой 2 см, обклеенной бумагой, которая имитирует ценные породы древесины. В ней сдвоенная головка (17) закрепляется на доске (10), а среднечастотная головка (12) и высокочастотная (16) закрепляются на передней стенке (4). Что касается задней стенки (15), она съемная. От ящика среднечастотная головка изолирована боксом (13), который изготовлен из фанеры толщиной 1 см и закреплен на стенке (4) при помощи уголков (11) и шурупов.

Выходное отверстие у рупора сдвоенной головки (17) закрывается решеткой (дет. 1, 2), а отверстия, которые находятся напротив среднечастотной и высокочастотной головок, —выпуклыми металлическими сетками (соответственно, 6 и 8) вместе с кольцевыми декоративными обрамлениями (соответственно, 5 и 7). Рамку (1) согнули из полосы из алюминиевого сплава, сечение которой 5 х 20 мм. У прутьев (2) диаметр - 4 мм. Они изготовлены из нержавеющей стали, затем вставлены с помощью клея в отверстия, которые просверлены в верхней и нижней стороне рамки с шагом 2 см.

Отверстия под туннель фазоинвертора и кольцевые обрамления отверстий для остальных головок согнуты из полосы из того же материала сечением 5 х 10 мм. Обрамление среднечастотной головки (5) крепится с помощью четырех шпилек с резьбой МЗ, которые вставлены при помощи клея в отверстия, у которых диаметр 3,2 мм, глубина 7 мм. Отверстия просверлены в торце кольца с той стороны, которая обращена к панели (4). Перед вырезанием отверстия под головку (12) надо в передней стенке выбрать по наружному диаметру обрамления (то есть, 5) канавку шириной 20 мм, глубиной 2-3 мм с помощью кругореза с резцом, стамеской. Начиная собирать конструкцию, сначала закрепляют головку (12), потом при помощи проволочных скобок или гвоздей закрепляют сетку (6), а уже затем устанавливают на свое место обрамление (5), дополнительно прижимающее сетку к панели (4). Также в проточке передней панели закрепляют обрамление (7) высокочастотной головки (то есть, 16) при помощи клея.

Чтобы придать АС нормальный вид, наружные торцы рамки (1), обрамлений (5, 7, 9) требуется отполировать до блеска, а также окрасить черной краской их боковые поверхности (и внутренние, и наружные). В черный цвет нужно окрасить также металлические сетки (то есть, 6, 8), а еще внутренние поверхности туннеля фазоинвертора, поверхности рупора сдвоенной головки, также диффузородержатель нижней головки, а именно 6ГД-2, а еще всю площадь круга, что под сеткой (6), часть диффузородержателя головки (12), обращенную к слушателю, головки винтов, которые крепят ее.

Катушки L1, L2 из разделительного фильтра намотаны на каркасах с помощью провода ПЭВ-2 1,3. У каркасов диаметр 35 мм и длина 100 мм. У каждой приблизительно по 460 витков (а именно 6 слоев где-то по 75-76 витков).

Что касается конденсаторов C1, C3 — это МБГП, МБГО и подобные.

Монтируя АС, надо обратить внимание на то, с какой полярностью подключаются головки 6ГД-2, ведь при ошибке возникает акустическое короткое замыкание. При этом наружная головка — это ВА1.

Чтобы улучшить демпфирование сдвоенной головки, можно обклеить внутреннюю поверхность ящика АС звукопоглощающим материалом или же обить ее этим материалом.

Можно головку 6ГД-2 заменить на 8ГД-1, головку 15ГД-11 заменить на 4ГД-8 либо 5ГДШ-5-4, головку 6ГД-13 заменить на 3ГД-2. При этой замене размеры ящика сохраняются.

В этой статье описана конструкция малогабаритных акустических систем АС, предназначенных для использования в местах отдыха вдали от дома, которые обладают более высоким качеством воспроизведения музыкальных фонограмм, чем серийные переносные магнитофоны и магнитолы высоких классов.

Как сделать акустическую систему своими руками

В статье кратко обоснованы пути и причины выбора такого технического решения. Данные акустические колонки могут быть построены начинающими радиолюбителями, так как требуют небольшое количество материалов, соответственно, малый объем трудозатрат на изготовление и просты в настройке. Технология изготовления акустических систем своими руками подробно описана в расчете на начинающих радиолюбителей.

Конструирование малогабаритных акустических систем своими руками было вызвано необходимостью во время отпуска вдали от дома слушать музыкальные записи с более высоким качеством, чем это позволяют переносные магнитофоны и магнитолы высоких классов. Речь не идет о высококачественном звучании категории Hi-Fi, поэтому необходимо было найти компромиссный вариант между качеством звучания и объемом аппарата.

Двухполосная акустика Мелодия-101-стерео

За основу была взята двухполосная акустическая система радиолы I класса «Мелодия-101-стерео» с динамическими головками типов 10ГДН-1 (6ГД-6), 6ГДВ-1 (ЗГД-2) и с габаритными размерами 300x171x168 мм, но с другой конфигурацией и несколько меньшим объемом ящика акустической системы (фото в начале сайта).

Ящики были изготовлены из ламинированной фанеры толщиной 12 мм. Боковые стенки и лицевая панель, с вырезанными отверстиями под динамические головки, соединены между собой с помощью деревянных реек сечением 15×15 мм, клея ПВА и коротких гвоздей.

Гвозди должны входить в фанеру на глубину не более 8 мм. Задняя часть боковых стенок вначале также была обшита рейками сечением 15х 15 мм по всему периметру на расстоянии 12 мм от края для крепления задней стенки шурупами.

Первоначально ящик акустической системы был закрытого типа, в нем были установлены две электродинамические головки типов 25ГДН-3 (15ГД-14) и 6ГДВ-1 (ЗГД-2) с простейшим фильтром, аналогично «Мелодии- 101 -стерео», из одного разделительного конденсатора между головками емкостью 2 мкФ.

Эти динамики выбраны из следующих соображений:

  • диапазон воспроизводимых частот динамика 25ГДН-3 65-5000 Гц;
  • частота основного резонанса 55 Гц;
  • номинальное электрическое сопротивление 4 Ом;
  • диапазон воспроизводимых частот динамика 6ГДВ-1 5000…18000 Гц;
  • номинальное электрическое сопротивление 8 Ом .

В результате этого получается полная стыковка диапазонов воспроизводимых частот от 65 до 18000 Гц без среднечастотного динамика. Практические испытания звучания этой акустической системы на слух дали результат, который оказался ниже ожидаемого в части воспроизведения низших звуковых частот. Очевидно, сказалось уменьшение объема ящика.

Проанализировав все возможные способы повышения качества звучания, при тех же габаритах акустической системы, было принято решение дополнить ящик щелевым фазоинвертором с тыльной стороны и установить сдвоенные головки типа 25ГДН-3, у которых результирующий эквивалентный объем в два раза меньше, чем у одной такой же головки .

Объем имеющегося ящика, как бы, увеличивается почти в два раза для наружной головки, учитывая, что внутренняя головка занимает часть полезного объема. В результате уменьшение объема ящика по сравнению с акустической системой «Мелодии-101- стерео» было компенсировано применением сдвоенных головок.

Чертежи акустической системы

Конструкция акустической системе со сдвоенными динамиками и фазоинвертором показана на рис. 1, где обозначены:

  1. Перегородка фазоинвертора.
  2. Направляющая рейка.
  3. Рейки крепления боковых стенок, лицевой панели и задней стенки.

Более качественно воспроизводят низшие частоты звукового диапазона сдвоенные головки по типу «диффузор к диффузору» (рис.2), но они заваливают средние частоты. При желании построить более высококачественную малогабаритную акустическую систему достаточно дополнить ее среднечастотной головкой, например, типа 3ГДШ-8 и разделительным фильтром аналогично использованному в акустической системе . При этом высоту акустического ящика (рис. 1) необходимо увеличить на размер диаметра СЧ головки плюс 20 мм.

Сдвоенные динамики по типу «диффузор за диффузором», нормально воспроизводят средние частоты, так как диффузор наружной головки обращен к слушателю лицевой стороной, и улучшают воспроизведение низших частот и АЧХ по сравнению с одиночной головкой . Данная колонка является двухполосной, что нужно учитывать, поэтому в данном случае вариант сдваивания головок по типу «диффузор за диффузором» является более приемлемым. Чертеж узла крепления сдвоенных головок показан на рис.3.

Для крепления сдвоенных головок к лицевой панели вырезают из фанеры толщиной 5…6мм
кольцо 10 с внутренним диаметром 110 мм и наружным — 160 мм, на которое соосно накладывают головку и размечают крепежные отверстия карандашом. Отверстия просверливают сверлом диаметром 3,3 мм. Кольцо с отверстиями накладывают на место крепления сдвоенных головок к внутренней стороне лицевой панели 11 и размечают центры углублений для головок крепежных винтов 7. В отверстия кольца 10 из фанеры вкручивают винты 7 М4 с круглыми головками и длиной 25 мм.

Если фанера очень плотная, можно предварительно нарезать в ней резьбу метчиком М4. После этого на лицевой панели делают углубления для головок крепежных винтов диаметром 7 мм и глубиной 4 мм. Эту операцию необходимо выполнять очень осторожно, чтобы не просверлить панель насквозь. Предварительно для точного размещения крепежных винтов углубления делают сверлом диаметром 2 мм, зажатым в ручные тиски, а затем таким же способом углубления расширяют сверлом диаметром 7 мм.

После этого кольцо со стороны лицевой панели и место его установки на внутренней стороне этой панели обильно смазывают клеем ПВА или эпоксидной смолой, включая углубления для головок винтов. Кольцо устанавливают на место и прижимают или прибивают короткими гвоздями. Излишки клея с передней стороны лицевой панели сразу же удаляют влажным тампоном, а эпоксидной смолы — ацетоном. Кольцо в таком состоянии находится до полной полимеризации клея (для надежности лучше выдержать 24 ч. так как прочность этого крепления очень важна).

Для сдваивания динамических головок необходим разделительный цилиндр 4, который герметизирует объем воздуха между диффузорами и на который опирается внутренняя головка. В авторском варианте цилиндр склеен из двух слоев линолеума на войлочной основе толщиной 5 мм. Внутренний диаметр цилиндра 114 мм, высота 60 мм.

Высота цилиндра может быть другой, в зависимости от модификации головок, но должна быть такой, чтобы зазор между диффузором внутренней головки и магнитной системой наружной головки был не менее 10… 15 мм. Для изготовления первого слоя цилиндра полоску линолеума 358×60 мм склеивают торцами клеем «Момент» войлочной основой внутрь и по наружной поверхности фиксируют скотчем.

Вторую полосу шириной 60 мм и длиной, определяемой по месту, наклеивают на первый слой цилиндра и фиксируют скотчем. Торцы второго слоя цилиндра должны стыковаться с противоположной стороны. В боковых стенках готового цилиндра напротив выводов внешней головки сверлят отверстия по диаметру монтажных проводников, которыми эта головка подключается к схеме акустической системе.

Для крепления (рис.3) обеих головок необходимо также иметь четыре втулки 6 длиной 25…30 мм с внешним диаметром 8… 10 мм со сквозной резьбой М4, четыре шпильки 5 длиной 60 мм с резьбой М4 на обоих концах по 20 мм, 8 гаек М4,12 картонных или текстолитовых шайб 2.8. Вначале на винты 7 приклеенного кольца устанавливают внешнюю динамическую головку 9 и закрепляют втулками 6 через шайбы 8. В отверстия разделительного цилиндра 4 вставляют достаточной длины зачищенные и залуженные монтажные проводники. Цилиндр устанавливают на динамическую головку 9, а проводники припаивают к ее выводам.

Во втулки 6 ввинчивают шпильки 5 на которые навинчивают опорные гайки с шайбами, и устанавливают внутреннюю головку 3 до плотного совмещения с разделительным цилиндром 4. На концы шпилек 5 надевают картонные или текстолитовые шайбы 2 и навинчивают гайки 1. ВЧ головку 6ГДВ-1 с заранее подпаянными проводниками крепят к лицевой панели обычным способом шурупами. Конденсаторы С1 и С2 приклеивают к днищу акустической системе клеем «Момент». На задней стенке крепят гнездо типа «Тюльпан» для подключения соединительного кабеля между акустической системой и усилителем мощности.

После крепления деталей их соединяют между собой согласно принципиальной схеме, показанной на рис.4. Конденсатор С1 80 мкФ состоит из нескольких стандартных, включенных параллельно. На схеме показано, что внутренняя головка зашунтирована конденсатором С1. В связи с тем, что длина звуковых волн среднечастотного диапазона соизмерима с расстоянием между диффузорами, звуковые сигналы, излучаемые внутренней головкой, приходят к диффузору внешней головки с существенными фазовыми сдвигами, искажающими АЧХ.

Например, звуковой сигнал с частотой 3000 Гц, длина волны которого равна 11,5 см, пройдя расстояние между диффузорами 6 см, поменяет фазу почти на противоположную и затормозит излучение этой частоты внешней головкой, т.е. создаст провал АЧХ на этой частоте. В этом варианте сдвоенных головок средние частоты должны воспроизводиться только внешней головкой. а низшие частоты, длины волн которых значительно больше расстояния между диффузорами, — воспроизводиться обеими головками и проходом фазойнвертора.

Сопротивление шунтирующего конденсатора на верхней частоте СЧ диапазона должно быть в несколько раз меньше сопротивления внутренней головки. Полное электрическое сопротивление динамика 25ГДН-3 на частоте 1 кГц равно 4 Ом, а на частоте 5 кГц составляет примерно в 5 раз больше. В данном случае на частоте 5 кГц сопротивление равно 0,4 Ом. В аналогичных акустических системах, габариты которых не являются критичными, внутреннюю головку можно шунтировать последовательным LC-контуром, перекрывающем полосу частот примерно 400 Гц…6 кГц.

В трехполосных акустических системах сдвоенные головки любого типа работают только на низших звуковых частотах, а средние и высокие частоты подавляются фильтром НЧ кроссовера, поэтому дополнительное шунтирование внутреннего динамика не требуется. Для прохода фазоинвертора на лицевой панели недостаточно места, поэтому было принято решение, поместить его с тыльной стороны. На работу динамических головок в области их основного механического резонанса место размещения прохода фазоинвертора особой роли не играет. Единственным недостатком этого варианта является то, что такую АС нельзя вплотную прислонять к стенкам помещений или мебели.

Для простоты изготовления и настройки фазоинвертор выполнен в виде узкой щели, образованной верхней стенкой ящика и плоской перегородкой 1 по всей его ширине (рис.1). Перегородка 1 выполнена из фанеры толщиной 6 мм и закреплена в пазах, образованных верхними рейками 3 крепления боковых стенок ящика и направляющими рейками 2. закрепленными на расстоянии 6 мм от верхних боковых реек. Верхнюю рейку 3 крепления задней стенки перемещают ниже на расстояние 21 мм от верхней стенки. Заднюю стенку обрезают сверху на 21 мм и крепят шурупами.

Изначально перегородка 1 имеет площадь примерно равную верхней стенке и возможность перемещаться в пазах для настройки фазоинвертора. Настройка фазоинвертора заключается в достижении минимума напряжения на сдвоенных головках на частоте основного резонанса 55 Гц путем изменением длины прохода перемещением перегородки. Более подробно настройка фазоинвертора описана в (4) и (5). После настройки фазоинвертора отмечают линию стыка перегородки с задней стенкой карандашом. Перегородку вынимают, лишнюю часть перегородки обрезают, а торец ее обрабатывают наждачной шкуркой.

После этих операций снимают заднюю стенку, а пазы, поперечную рейку и края перегородки смазывают клеем ПВА. Перегородку вставляют в пазы на свое место, а выдавленные части клея равномерно распределяют узкой кистью вдоль стыков перегородки с рейками. После полной полимеризации клея проверяют прочность крепления перегородки на отсутствие ее вертикального перемещения в пазах для предотвращения дребезжания. При обнаружении щелей между перегородкой и направляющими рейками щели заливают клеем ПВА.

После этого крепят заднюю стенку — и акустическая система готова к эксплуатации. Перед установкой задней стенки на рейки крепления наносят слой пластилина толщиной около 1 мм для герметизации корпуса акустической системы. В заключение следует отметить, что приведенная модернизация акустической системы дала положительные результаты и успешно используется в течение нескольких лет.


В последнее время у части радиолюбителей получили признание акустические системы с открытым акустическим оформлением - щиты или неглубокие открытые ящики. Выпущена даже промышленная акустика по такой схеме, получившая высокую оценку специалистов. На фото показана известная система Jamo R909 .
Некоторые проблемы такого решения изложены в статье, мой перевод которой приведен ниже.

Предисловие

В начале своей эволюции акустические системы (АС) были только открытого типа. Затем, постепенно, но практически полностью произошел переход на закрытое оформление. Закрытыми АС будем считать фазоинверторы, бандпасы и другие варианты, т. е. оформления при которых лицевая сторона диффузора динамика прямо излучает в помещение, а тыльная в закрытый объём ящика или в помещение, но через резонаторы или другие конструкции, затрудняющие движение воздуха.

Закрытые оформления позволили резко уменьшить объем АС, кардинально расширить частотный диапазон вниз. Промышленность практически полностью перешла на выпуск динамиков именно для закрытых оформлений. Выросли целые поколения, которые ничего кроме ЗЯ и не слышали. Однако немало людей думает, что «вместе с водой выплеснули ребенка» т. к. считает, что звучание средних, главных для восприятия частот, ухудшилось.

Поэтому среди радиолюбителей и некоторых производителей акустики снова появился интерес к открытым акустическим оформлениям (далее для простоты будем называть их ОЯ). Проблема еще и в том, что специальных динамиков для ОЯ сегодня практически не выпускают т. к. они пользуются малым спросом, мелкие фирмы могут их производить для любителей, но из-за малого тиража они будут дорогими.

Хочу предложить вашему вниманию мой вольный перевод статьи Martin J. King «Designing a Passive Two Way Open Baffle Speaker System». Думаю, поднимаемые проблемы и их решения будут интересны.

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Сайт-источник (En): by Martin J. King

Мой комментарий к статье

Конечно, мнение автора статьи не является непреложной истиной и не претендует на окончательное и полное решение проблемы, однако, она представляет интерес для любителей, интересующихся акустикой. Я не гарантирую полную точность перевода, но надеюсь, что основные положения изложил правильно.

Вызывает скептицизм отсутствие измерений с помощью микрофона и именно в домашних условиях. Интересно было бы узнать впечатления независимых слушателей-экспертов не «обработанных» автором конструкции. Но это только мои мечтания.

Читательское голосование

Статью одобрили 47 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Частота основного резонанса - частота, при которой возрастает до пикового максимума полное электрическое сопротивление катушки;

Добротность электромеханической системы громкоговорителя. Это очень важная характеристика. Она показывает степень инерционности системы - как механической, так и электрической, и определяет скорость затухания свободных колебаний монитора;

Номинальный диапазон частот, т.е. частотная область, в которой работа громкоговорителя удовлетворяет норме;

Среднее звуковое давление - давление, развиваемое в определенном диапазоне частот и в определенной точке звукового поля при подаче определенной электрической мощности;

Характеристическая чувствительность;

Неравномерность АЧХ - разность между максимальным и минимальным давлением в номинальном (или при необходимости в каком-либо ином) диапазоне частот. У хороших громкоговорителей она не превышает 3-4 дБ;

Частотная характеристика - графическое изображение предыдущего параметра;

Направленность - изменение давления при отклонении от рабочей оси на определенный угол при неизменном расстоянии от центра;

Коэффициент гармоник (обычно 3-й гармоники и выше) - выраженный в процентах уровень гармоник, появляющихся при подаче на громкоговоритель чистого синусоидального сигнала, в котором никаких гармоник нет;

Коэффициент интермодуляционных искажений. Об этом параметре нужно сказать подробнее. Предположим, на громкоговоритель подан сигнал, содержащий две частоты 100 и 1000 Гц. В результате взаимодействия этих частот возникают комбинационные частоты (иногда некорректно называемые комбинационными гармониками) с частотами, соответствующими разности или сумме верхней частоты и частоты, кратной нижней - в нашем случае 800, 1200 , 600, 1400 Гц и т.д. Чем ниже общий уровень этих частот, тем лучше. Идеальный громкоговоритель вообще не должен генерировать эти частоты, как и любые другие, отсутствующие в исходном сигнале.

Из нескольких параметров мощности наиболее важны следующие:

Номинальная мощность - мощность, при которой нелинейные искажения не превышают заданного предела;

"музыкальная мощность", называемая также "паспортной", "максимальной шумовой", "продолжительной" и т.д. - мощность в определенном диапазоне частот, которую громкоговоритель выдерживает при реальном или широкополосном шумовом сигнале без повреждений на протяжении некоторого времени;

Пиковая (максимальная кратковременная) мощность - мощность, которую выдерживает громкоговоритель при шумовом сигнале на протяжении короткого импульса (от 0,01 до 1n) без повреждений;

Рупорные излучатели. Основным недостатком громкоговорителей непосредственного излучения является их чрезвычайно низкий КПД. Причина этого заключается в несогласованности сопротивлений механической системы и окружающей среды. Для повышения сопротивления излучения нужно увеличивать размеры излучателя, но это повлечет рост механического сопротивления массы излучателя и не даст выигрыша в КПД. Поскольку диффузор выполняет две функции: преобразования механических колебаний в акустические и излучения этих колебаний в окружающую среду, разрешить такое противоречие можно только разделением этих функций, которое осуществляется в рупорных громкоговорителях, Рупор служит также для согласования сопротивлений механической системы и окружающей среды. Рупором называют трубу с переменным сечением. Входное отверстие излучающего рупора (горло) меньше, чем выходное (устье). Выходное отверстие является излучателем, а входное - нагрузкой для механической системы. Таким образом, излучатель может быть сделан сколь угодно большим, а механическая система - небольшой и потому легкой.

Виды рупоров: а - сдвоенный; б - секционированный.

Рупоры применяют с различным законом изменения поперечного сечения. Наиболее распространены рупоры экспоненциальные; реже применяются конические, так как они имеют значительно менее равномерную амплитудно-частотную характеристику. Для острой направленности и более низкой границы передаваемого диапазона частот следует увеличивать выходное отверстие рупора и выбирать рупор большей длины. Для увеличения длины рупор часто свертывают или складывают. С аналогичными явлением мы сталкиваемся в духовых музыкальных инструментах: чем ниже регистр инструмента, тем длиннее его рупор.

Для концентрации или расстояния звуковых волн применяются акустические линзы, основанные на преломлении звуковых лучей при переходе из одной среды в другую с разными скоростями распространения (например, скорость распространения звуковых волн в пористых материалах или в решетках и жалюзи пластин отличается от скорости распространения в открытом пространстве). К недостаткам рупора можно отнести нелинейные искажения, обусловленные большой величиной и резким изменением амплитуды звукового давления в пределах одной длины волны в горле рупора, а также частотные искажения в рупорах конической формы. Рупорные электродинамические громкоговорители имеют два конструктивных варианта: узко- и широкогорлые. Площадь входного отверстия рупора в узкогорлых громкоговорителях в несколько раз меньше площади поршневой диафрагмы, в широкогорлых - эти площади или одинаковы, или близки друг к другу.

Таковы основные технические параметры громкоговорителей. Следует заметить, что обращаться с паспортными данными следует осторожно. Некоторые производители иногда называют, например, диапазон воспроизводимых частот без указания на неравномерность характеристики; при этом может выясниться, что заявленный нижний порог в 25-30 Гц обеспечивается лишь при падении давления на 10 дБ и более, что фактически является фальсификацией.

Хотелось бы отметить, что за 80 лет с момента изобретения динамического задача - передать звучание симфонического оркестра, ансамбля, голоса и др., - можно только удивляться и восхищаться гениальностью конструкции самого громкоговорителя аудиотехника проделала огромный путь: от фонографа до DVD - а громкоговоритель конструктивно принципиально не изменился. Радикально изменилась только технология его изготовления и материалы. Учитывая, что перед такой простой конструкцией (состоящей всего из нескольких элементов: диафрагмы, катушки и магнитной цепи) стоит огромная массового акустического изделия, миллиарды экземпляров которого используются во всем мире.

Акустические системы

От характеристик громкоговорителей перейдем к составляемым из них акустическим системам. К сожалению, отечественная терминология еще не устоялась и не соответствует зарубежной. Так, собственно "динамики" в нашей терминологии, особенно в старых ГОСТах, именуются "головками", а акустические системы - "громкоговорителями". В современной профессиональной и коммерческой среде используют термин "акустическая система", причем бытовые акустические системы называют по обиходному "колонками", а профессиональные студийные акустические системы "мониторами". Некоторые, запутавшись, просто перешли на транслитерацию с английского - "спикер", в их устах вовсе не председатель Думы, а динамик "вообще". При этом низкочастотный "спикер" - это "вуфер" или "субвуфер", среднечастотный - "драйвер", а высокочастотный - это "твиттер", но для него есть и русское определение "пищалка" (кстати, точный перевод слова tweeter).

Идеальная акустическая система должна иметь только один широкополосный громкоговоритель, воспроизводящий полную полосу частот 20-20000 Гц. Однако, так как к громкоговорителю предъявляют различные, а зачастую взаимоисключающие требования при работе его в различных полосах частот, сделать такой идеальный громкоговоритель практически невозможно, по крайне мере за приемлемую цену. Поэтому подавляющее большинство современных акустических систем имеют по две и более головки, работающих в различных полосах частот. Низкочастотный громкоговоритель - всегда диффузорный динамик, среднечастотный- тоже, но иногда бывают среднечастотные рупорного типа (horn). Высокочастотные громкоговорители производятся как диффузорные, так и рупорные и купольные (dome, bullet). Двухполосная система используется обычно для так называемых "мониторов ближнего поля", т.е. располагающихся непосредственно вблизи головы звукорежиссера. Один динамик в такой системе воспроизводит низкие и средние частоты, другой - высокие. Для разделения частот внутри корпуса находится разделительный фильтр (в зарубежной терминологии crossover). При этом частота разделения входного электрического сигнала для подачи на низкочастотный и высокочастотный динамики выбирается несколько выше, чем нижняя граница диапазона высокочастотного громкоговорителя. Учитывается также номинальная мощность ВЧ-громкоговорителя. Гораздо лучше воспроизводят слышимый диапазон частот 3-х полосные системы, состоящие из низкочастотного громкоговорителя (woofer), среднечастотного (mid-driver), и высокочастотного (tweeter). Работа в ограниченном диапазоне "своих" частот улучшает звучание низко- и средне- частотных динамиков и снижает искажения, т.к. генерируемые этими динамиками гармоники высокого порядка оказываются выше частоты среза фильтра и соответственно подавляются.

Акустическое оформление

П
ередняя и задняя поверхности колеблющегося поршня излучают колебания в противофазе: когда передняя поверхность в момент времени t 1 создает сжатие среды, то противоположная поверхность поршня, в этот же момент t 1 , создает разрежение.

Сжатие и разрежение распространяются в разные стороны (Рис.18.6). При определенных условиях, огибая поршень, волны интерферируют с колебаниями возникшими с противоположной стороны (фазы) и их сумма стремится к нулю. Это явление называют - акустическим коротким з амыканием (АКЗ). Возникновение АКЗ уменьшает отдачу акустической мощности излучателя (поршня) в области тех частот, при которых длина излучаемой волны велика по сравнению с размерами поршня (условия дифракции). Это явление возникает на низких частотах НЧ звуковой волны.

Чтобы избежать АКЗ на низких частотах, необходимо установить экран, чтобы колебания из области сжатия не огибали поршень и исключили явление интерференции. Экран устанавливается в сочетании с излучателем. Такой прием получил название акустического экранного оформления (оформление). Простейшим видом оформления является щит (Рис.18.7). Чтобы полностью устранить АКЗ, необходимо установить щит, у которого линейные размеры плоскости были больше половины длины звуковой НЧ волны λ:

d > λ/2; ( 6.1.1)

Стандартный акустический экран по ГОСТ 16122-84 имеет размер 1350 х 1650 м.

Закрытый ящик (ЗЯ, Closed Box) это оформление второго порядка (рис.6.1.3 А и рис. 6.1.4). По сравнению с другими видами нагруженного оформления менее чувствителен к отклонениям характеристик. Основные его плюсы: прекрасная импульсная характеристика.Это теоретически позволяет получить плоскую АЧХ. Недостаток = низкий КПД, что требует повышенной мощности усилителя, и повышенный уровень четных гармоник из-за несимметричной нагрузки диффузора.

А – закрытый ящик, Б – фазоинвертор, В – пассивный излучатель

Ч
астота резонанса и полная добротность головки при установке в закрытый ящик объемом Vc, соизмеримым с эквивалентным Vas, увеличиваются. Таким образом, при установке головки в ЗЯ с объемом, равным эквивалентному, ее резонансная частота и добротность увеличиваются в 1,41 раза, в ящике объемом 0,5Vas = в 1,73 раза и так далее.

Следующий по распространенности тип акустического оформления – фазоинвертор. Для работы в фазоинверторе подходят динамики, у которых показатель Fs/Qts составляет 90 и больше. Из всех возможных конструкций систем двойного действия наибольшее распространение получил фазоинвертор (ФИ, Vented Box, Ported Box, Bass Reflex). Это резонансная система. Заключенная в ФИ масса воздуха на частоте его настройки ведет себя подобно диффузору, являясь источником звуковых колебаний. Пассивный излучатель - это разновидность ФИ, в котором масса воздуха в туннеле заменена массой подвижной системы пассивного излучателя В качестве пассивного излучателя чаще всего используют обычную динамическую головку, иногда с удаленной магнитной системой.

Конструктивно он выполнен в виде закрытого ящика с двумя отверстиями

В одном отверстии размещается излучатель (поршень), другое отверстие свободное, и имеет конструкцию в виде небольшой трубы объемом V. Частота фазоинвертора ƒ ф, (Рис.18.10).

При медленных колебаниях (8Гц - 10Гц) пружина С в (Рис.18.10). соединяющая обе массы m, не успевает деформироваться, так как у нее большое упругое сопротивлениеz :

z=1/(ω·С в); (18.1)

В результате обе массы m п и m в двигаются с одинаковой фазой. При этом волна, излучаемая отверстием, сдвинута на 180 o по фазе по сравнению с волной, излучаемой поршнем. Повышение частоты приводит к уменьшению упругого сопротивления воздуха в ящике и пружина С в начинает деформироваться. В результате между колебаниями обоих масс m п и m в возникает фазовый сдвиг, возрастающий с повышением частоты и достигающий на частоте резонанса ящика 180 o . Таким образом, воздух в отверстии и поршень колеблются в противофазе, а волны, излучаемые ими, будут синфазными и интерферируя усиливают друг друга. Частоту резонанса фазоинвертора ƒ ф, как правило, выбирают равной частоте резонанса ƒ 0 головки (поршня), т.е. в области НЧ рабочего диапазона (Рис.18.10). При дальнейшем увеличении частоты излучение звука отверстием не происходит, так как инерционное сопротивление воздуха в отверстии ω·m в становится чрезвычайно большим. При этих частотах фазоинвертор аналогичен закрытому ящику. Внутренние поверхности фазоинвертора также, как и ящика, покрывают звукопоглощающим материалом.

Рисунок 18.11

На схеме рис. 18.11 усилитель мощ­ности, являющийся для громкоговорителя источником сигнала, с на­пряжением открытой цепи и выходным сопротивлением пре­образован в генератор напряжений, имитирующий генератор с вы­ходным значением акустического давления, после генератора полное сопротивление, представляющее собой сумму активного сопротивления звуковой катушки и выход­ного сопротивления усилителя. M as - акустическая масса подвижной системы, присоединенная масса воздуха с передней и тыльной стороны диофрагмы. С а s - акустическая гибкость подвесов. R as - акустическое сопротивление подвижной системы. M av - акустическая масса воздуха в фазоинверсной трубе.

Акустическая нагрузка. Диффузор динамической головки в закрытом оформлении испытывает существенно отличающееся сопротивление при движении вперед и назад. Асимметричность нагрузки является потенциальным источником нелинейных искажений. Поэтому еще в середине 70-х годов появились акустические системы, в конструкции которых этот недостаток устранялся введением дополнительной акустической нагрузки для передней поверхности диффузора. Аналогичные решения можно использовать и для ограничения амплитуды колебаний диффузора в системах двойного действия. Надежных методик расчета акустической нагрузки нет, необходим эксперимент.

Рисунок 18.12

Акустическую нагрузку можно реализовать различными способами. В простейшем случае (рис.18.12 А) перед диффузором размещается отражающая поверхность (Reflex Body). Однако такое решение ухудшает чувствительность АС и ее АЧХ на средних частотах. В некоторых современных конструкциях для улучшения АЧХ и диаграммы направленности служит тело вращения чечевицеобразной формы (рис.18.12 Б). С этой же целью можно использовать отражающую поверхность, расположенную под углом (рис.18.12 В). Клиновая нагрузка отчасти играет роль короткого рупора, что способствует акустическому усилению определенного диапазона частот. Как дальнейшее развитие этой идеи появились акустические системы с резонатором (рис.18.12 Г). После этого оставалось сделать только один шаг к конструкции полосовых громкоговорителей.

П
олосовые громкоговорители. Общая черта всех конструкций полосовых громкоговорителей (bandpass) - наличие одной или нескольких резонансных камер и установка динамической головки внутри корпуса. Поскольку эти системы уже не являются системами прямого излучения, их расчет и изготовление весьма сложны. Поэтому распространение получили в основном конструкции четвертого порядка (рис. 18.13 А). Полосовые громкоговорители шестого (рис.18.13.Б,В) и восьмого (рис.18.13.Г,Д) порядка встречаются реже.

Рисунок 18.13

Полосовые громкоговорители: А – закрытый ящик-резонатор, Б – фазоинвертор двойного действия, В – фазоинвертор последовательного действия, Г – фазоинвертор последовательного двойного действия, Д – фазоинвертор-резонатор последовательного двойного действия

Полосовое акустическое оформление используется исключительно для сабвуферов. Достоинство полосового громкоговорителя - высокий КПД, импульсные же и фазовые характеристики весьма посредственны и ухудшаются с ростом порядка. Для всех конструкций, кроме закрытого ящика-резонатора, желательно применение фильтра инфра-низких частот (как и для классического фазоинвертора).

Помимо рассмотренных конструкций полосовых громкоговорителей с одной динамической головкой известны также АС, имеющие две головки. Конструкция получена объединением двух одинаковых полосовых систем. Одна из камер становится общей, ее объем при этом удваивается. На (рис.18.14 А,Б)показаны два варианта оформления четвертого порядка, на рис.18.14 В – шестого.

О
дно из достоинств подобных конструкций состоит в том, что они не требуют специального монофонического канала усиления: каждую головку можно подключить к своему каналу стереофонического УМЗЧ.

Рисунок 18.14

Сдвоенные головки. Практически во всех рассмотренных конструкциях можно использовать сдвоенные динамические головки. Для этого однотипные головки устанавливаются одним из показанных на рис.18.15 способов. Получившуюся конструкцию можно рассматривать как новую низкочастотную динамическую головку с совершенно другими свойствами. Теоретические значения полной добротности и частоты основного механического резонанса получившейся системы рассчитываются как среднее геометрическое от соответствующих величин исходных головок. Поскольку при сдваивании обычно используются однотипные головки с достаточно близкими параметрами, можно считать, что эти параметры практически не изменятся. Однако заключенный между диффузорами головок связанный объем воздуха увеличивает эффективную массу подвижной системы, понижая частоту основного механического резонанса головок больших размеров до 80% от исходной.

Рисунок 18.15 Установка сдвоенных головок: А - лицом к лицу, Б - спина к спине, В - в затылок, Г - со связанным объемом

До настоящего времени основным материалом для изготовления корпусов акустических систем остается древесина. При этом учитывается, что дерево обладает собственными акустическими свойствами, а внесение корпусом собственных призвуков нежелательно. С ними борются как специальными гасящими конструкциями, так и применением вместо сплошной "чистой" древесины древесно-стружечной плиты (ДСП), столь нелюбимой нами в мебели. ДСП не имеет какой-либо структуры (каковой являются линейные волокна дерева), поэтому меньше подвержена резонансам. Снаружи ДСП отделывается разными покрытиями, в том числе имитирующими дерево (фанеровка), но эта отделка носит чисто декоративный характер.

Наряду с традиционным использованием дерева продолжаются попытки использования иных материалов - пластика, металла, камня. Существует довольно большое число пластиковых акустических систем, как правило, небольшого размера (ближнего поля), звучащих достаточно приемлемо и дешевых в силу технологичности изготовления корпусов. Однако попытки создания пластмассовых корпусов акустических систем большого размера пока не увенчались успехом (с точки зрения акустики, разумеется, а не "ящикостроения"). Дело в том, что большой корпус должен обладать и большой массой, иначе в нем начинают "гулять" такие резонансы, что их подавление обходится гораздо дороже, чем, например, в деревянном корпусе.

Довольно эффективны и в последнее время популярны металлические корпуса акустических систем. Это связано, в частности, с широким использованием в студийной практике компьютеров с традиционными электронно-лучевыми кинескопами мониторов, на которые плохо влияют магниты динамиков, если те находятся слишком близко. Металлический корпус акустической системы является в данном случае экраном. Кроме того, металл технологичен в изготовлении и обеспечивает необходимую по акустическим требованиям жесткость.

Интересные результаты дает и использование камня. Тут о технологичности изготовления корпусов говорить не приходится, но акустические результаты оказываются превосходны. Впрочем, проблема решается компромиссом - применением синтетического материала, позволяющего соединить простоту производства корпуса с массивностью и жесткостью камня.

Однако, несмотря на активные поиски новых материалов, основным остается "старое доброе" дерево.

Долгое время традиционное расположение динамиков на передней стенке корпуса в виде "снеговика" (внизу низкочастотный громкоговоритель, в середине - среднечастотный, и наверху - высокочастотный) устраивало пользователей. Однако было замечено, что расстояние от центров разных динамиков до слушателя часто различно, и звуки от них доходят до слушателя не строго синфазно. Величина несинхронности чрезвычайно мала, но проблема существует. Решение было найдено в различных типах так называемых коаксиальных, находящихся на одной оси, громкоговорителях. В простейших случаях высокочастотный динамик закреплялся перед центром конуса низкочастотного диффузора, но, естественно, без физического соприкосновения с ним. Другой, более сложный, но и более изящный способ создания точечного излучателя предложила известная английская фирма Tannoy. В их, теперь уже классической системе, мембрана высокочастотного динамика находится сзади магнита низкочастотного динамика. В керне низкочастотного громкоговорителя проделаны каналы, по которым воздушное давление от высокочастотной мембраны проходит в направлении излучения низкочастотного диффузора, являющегося к тому же рупором для высоких частот. Так достигается идеальная точечность излучения.

Ранее упоминалось, что на высоких частотах диффузоры, особенно большие, колеблются в основном центральной частью, прилегающей к катушке. Это свойство было использовано при создании широкополосных громкоговорителей, популярных в профессиональной технике два-три десятилетия назад и встречающихся и поныне. В этих громкоговорителях в центральную часть диффузора вклеивался дополнительный микродиффузор, работавший как коаксиальный высокочастотный громкоговоритель. Конечно, результат был далек от качества настоящих коаксиальных систем, но отдача на высоких частотах у этих широкополосных динамиков действительно существенно улучшалась.

Современное производство предельно стандартизовано. Сложились стандарты и на размеры громкоговорителей - от мала до велика. Современные динамики принято мерить в дюймах, и это удобно: получается не только размер, но как бы и "номер изделия".

Даже для мощной акустики не применяются динамики больше 21", да и восемнадцатидюймовые встретишь не часто. Далее по порядку идут 15", 12", 10" и 8".

Среднечастотные - 8", 6,5" и 5". Высокочастотные - 4", 2,5" и 1,5". Впрочем, размеры диффузора имеют значение в основном для низкочастотных громкоговорителей, напрямую влияя на нижнюю границу диапазона и уровень звукового давления.

Реальную звуковую картину могут представить только большие акустические системы (контрольные мониторы) "дальнего поля", звучащие равномерно по всему диапазону частот и не перегружающиеся при рекомендованном уровне прослушивания (около 90 дБ).

Характеристики направленности

Как следует из теории акустики, идеальным источником звука является "точечный" излучатель, то есть такой излучатель, размерами которого по сравнению с длиной излучаемой им звуковой волны можно пренебречь. К сожалению, реальные акустические системы весьма далеки от такого идеального излучателя и, более того, имеют различную диаграмму направленности для разных частот звукового сигнала. Ширина диаграммы направленности громкоговорителя определяется отношением длины волны излучаемого им звукового сигнала и геометрического размера (диаметра) диффузора громкоговорителя. Кроме того, диаграмма направленности в области совместного действия излучения двух громкоговорителей АС зависит от взаимного фазового сдвига их сигналов, определяемых схемой разделительного фильтра акустической системы.

Сегодня в «колонкостроении» существует два подхода, связанных с направленностью акустических систем. Приверженцы первого из них утверждают: система должна быть остронаправленной, для того чтобы исключить вредные отражения звука. По этой логике остронаправленные колонки обязаны доставить звуковую информацию точно в зону прослушивания без нежелательных «примесей» в виде отражений от стен и различных предметов. Общеизвестными примерами могут служить колонки, построенные на остронаправленных коаксиальных динамиках (Tannoy, KEF). Коаксиальные двухполосные излучатели представляют собой собранные на единой магнитной системе среднечастотный и высокочастотный громкоговорители. Купольная "пищалка" собрана на внутреннем керне магнитной системы и находится внутри конусного диффузора среднечастотного громкоговорителя, который является своеобразным рупором-звуководом для звуковых волн, излучаемых "пищалкой". Такие излучатели обладают рядом уникальных особенностей, заметно выделяющих их из массы других громкоговорителей. Во-первых, благодаря используемой конструкции, центры излучения ВЧ и СЧ-громкоговорителей находятся практически в одной точке, что исключает возникновение фазовых и временных искажений излучаемых ими сигналов. Во-вторых, так как излучение средних и высоких частот физически осуществляется из одной точки пространства (условно), излучатели типа Uni-Q имеют хорошую диаграмму направленности на этих частотах благодаря этим серьезным преимуществам, звучание акустических систем с коаксиальными излучателями характеризуется отличной локализацией источников звука в пространстве. В европейских колонках встречаются схемы D"Appolito, в которых твитер расположен между двумя одинаковыми НЧ/СЧ-головками, - это обостряет направленность на ряде частот, снижая количество звуковых переотражений от пола и потолка. В дорогих колонках подчас встречаются целые гирлянды твитеров, призванные ювелирно фокусировать высокие частотыДиаметрально противоположный подход - ненаправленные акустические системы, или акустика с круговой направленностью. Такие громкоговорители, в силу своей конструкции, в полной

Может показаться странным, но динамик в основном характеризуют три параметра, предложенный Тиллем и Смоллом :

Fs - это частота резонанса динамика без какого-либо акустического оформления. Она так и измеряется - динамик подвешивают в воздухе на возможно большем расстоянии от окружающих предметов, так что теперь его резонанс будет зависеть только от его собственных характеристик - массы подвижной системы и жесткости подвески.
Qts - отношение передаточной функции динамика на частоте Fs к передаточной функции на частотах, где амплитудно-частотная характеристика (АЧХ) динамика горизонтальна, т.е. на частотах выше Fs. Другими словами, Qts -характеризует эффективность динамика на резонансной частоте.
Vas - объем воздуха, который обладает гибкостью (величина обратная упругости) такой же, как и подвижная система динамика.

При размещении динамика в закрытом ящике (ЗЯ) гибкость воздуха внутри ящика добавляется к гибкости подвижной системы динамика и его резонансная частота изменяется. Существует следующая закономерность, при помещении динамика в ящик объемом Vas его резонансная частота Fs и добротность Qts возрастают в 1,4 раза.Измерить эти параметры при первый взгляде на конструкцию довольно геморойно, но проделав это один раз - все сомнения пропадают - всё оказывается достаточно просто.

Для начала надо подготовиться:

ЗЯ я сразу отмёл - зачем мне колонка с низким КПД? Динамик и так не самый мощный - номинал 50Вт, максимальная 75Вт. К тому же внутри колонки нехилое давление создается, что требует особой герметичности. И параметр Fs/Qts не подходит для моего динамика. Правда, ЗЯ это и самый маленький ящик из всех - что может оказаться иногда важным.
ФИ я не захотел делать по трем причинам:1) надо супер ровную дырку делать и потом чем-то её закрывать, иначе мой ребенок сразу приговорит динамик 2) надо ставить фильтр для обрезания частот свыше 200Гц, иначе 75ГДН дальше звучит совсем не cool. 3) нормальный спад на низах получался при диких размерах ящика 120-150л(еще один шкаф в квартире), меня бы жена выперла вместе с этим сабвуфером:) НО! Fs/Qts=74, т.е. динамик наиболее подходит для ФИ, а низы классные дает при этом, только вот РАЗМЕР 8(. Тут надо учесть, что для одиночных бандпассов подходят практически те же динамики, что и для фазоинверторов.
Бандпасс мне подошел и понравился больше всего. Фильтр делать не надо - сам корпус фильтрует. Динамик внутри спрятан - не проткнешь. И расчеты в программах показали наилучшие результаты при уместном размере...

Расчет и проектирование ящика.

Расчеты показали у Бандпасса относительно неплохие размеры и неплохой спад на низах, однако всё равно спад сильно зависел от объема и пришлось идти на компромисс, немного уменьшив ящик до 65л. Расчеты я провел сразу в трех программах, дабы проверить верность того, что я соорудил. Результаты практически сошлись. Я использовал WinISD 0.44 , WinISD Pro Aplha и JBL SpeakerShop или BassBox (найдите 10 отличий называется). Понравилась мне больше всего первая прога, вторая была жутко глючной (на то она и Alpha), но в некоторых отношениях полезной, третья - просто подтвердила мои расчеты (у неё очень неудобный интерфейс - плохо менять параметры на лету, подбирая значения для размера камер и фазоинверторов, а после каждой загрузки нужно в метрическую систему переключаться). Итак чего получилось - смотрим графики (взять файлы проектов можно будет далее).