Биологический фильтр для очистки сточных вод. Биофильтры для очистки сточных вод. Эксклюзивные ценовые предложения

Биологический фильтр -- сооружение, в котором сточная вода фильтруется через загрузочный материал, покрытый биологической пленкой, образованной колониями микроорганизмов. Биофильтр состоит из следующих основных частей:

а)фильтрующей загрузки (тело фильтра) из шлака, гравия, керамзита, щебня, пластмасс, асбестоцемента, помещенной обычно в резервуаре с водопроницаемыми или водонепроницаемыми стенками;

б)водораспределительного устройства, обеспечивающего равномерное с небольшими интервалами орошение сточной водой поверхности загрузки биофильтра;

в) дренажного устройства для удаления отфильтровавшейся воды;

г)воздухораспределительного устройства, с помощью которого поступает необходимый для окислительного процесса воздух.

Процессы окисления, происходящие в биофильтре, аналогичны процессам, происходящим в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтре эти процессы протекают значительно интенсивнее.

Проходя через загрузку биофильтра, загрязненная вода оставляет в ней не растворенные примеси, не осевшие в первичных отстойниках, а также коллоидные и растворенные органические вещества, абсорбируемые биологической пленкой. Густо заселяющие биопленку микроорганизмы окисляют органические вещества и отсюда черпают энергию, необходимую для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества и в то же время увеличивается масса активной биологической пленки в теле биофильтра. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра. Необходимый для биохимического процесса кислород воздуха поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра.

Классификация биофильтров

Биофильтры классифицируются по различным признакам.

1. По степени очистки --на биофильтры, работающие на полную и неполную биологическую очистку. Высокопроизводительные биофильтры могут работать на полную или неполную очистку в зависимости от необходимой степени очистки. Малопроизводительные биофильтры работают только на полную очистку.

2. По способу подачи воздуха -- на биофильтры с естественной и искусственной подачей воздуха. Во втором случае они часто носят название аэрофильтров. Наибольшее применение в настоящее время имеют биофильтры с искусственной подачей воздуха.

3. По режиму работы -- на биофильтры, работающие с рециркуляцией и без нее. Если концентрация загрязнений в поступающих на биофильтр сточных водах невысока и они могут быть поданы на биофильтр в таком объеме, который достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При очистке концентрированных сточных вод рециркуляция желательна, а в некоторых случаях обязательна. Рециркуляция позволяет понизить концентрацию сточных вод до необходимой величины, так же как и предварительная их обработка в аэротенках -- на неполную очистку.

4. По технологической схеме -- на биофильтры одноступенчатые и двухступенчатые. Двухступенчатые биофильтры применяются при неблагоприятных климатических условиях, при отсутствии возможности увеличивать высоту биофильтров и при необходимости более высокой степени очистки.

Иногда предусматривается переключение фильтров, т. е. периодическая эксплуатация каждого из них в качестве фильтра первой и второй ступени.

5. По пропускной способности -- на биофильтры малой пропускной способности (капельные) и большой пропускной способности (высоко-нагружаемые).

6. По конструктивным особенностям загрузочного материала -- на биофильтры с объемной загрузкой и с плоскостной загрузкой.

Биофильтры с объемной загрузкой можно подразделить на: капельные биофильтры (малой пропускной способности), имеющие крупность фракций загрузочного материала 20--30 мм и высоту слоя загрузки 1--2 м;

высоко нагружаемые биофильтры, имеющие крупность загрузочного материала 40--60 мм и высоту слоя загрузки 2--4 м;биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60--80 мм и высоту слоя загрузки 8--16 м. Биофильтры с плоскостной загрузкой подразделяются на: биофильтры с жесткой загрузкой в виде колец, обрезков труб и других элементов. В качестве загрузки могут быть использованы керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100--600 кг/м8, пористость 70--90%, высота слоя загрузки 1--6 м;биофильтры с жесткой загрузкой в виде решеток или блоков, собранных из чередующихся плоских и гофрированных листов. Блочные загрузки могут выполняться из различных видов пластмассы (поливинилхлорид, полиэтилен, полипропилен, полистирол и др.), а также из асбестоцементных листов. Плотность пластмассовой загрузки 40-- 100 кг/м3, пористость 90--97%, высота слоя загрузки 2--16 м. Плотность асбестоцементной загрузки 200--250 кг/м3, пористость 80--90%, высота слоя загрузки 2--6 м;биофильтры с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5--60 кг/м3, пористость 94--99%, высота слоя загрузки 3--8 м.

К биофильтрам с плоскостной загрузкой следует отнести и погружные биофильтры, представляющие собой резервуары, заполненные сточной водой и имеющие днище вогнутой формы. Вдоль резервуара несколько выше уровня сточной воды устанавливается вал с насаженными пластмассовыми, асбестоцементными или металлическими дисками диаметром 0,6--3 м. Расстояние между дисками 10--20 мм, частота вращения вала с дисками 1--40 мин-1.

Плоскостные биофильтры с засыпной и мягкой загрузкой рекомендуется применять при расходах до 10 тыс. м3/сутки, с блочной загрузкой-- до 50 тыс. м3/сутки, погружные биофильтры -- для малых расходов до 500 м3/сутки.

Союзводоканалниипроектом составлен экспериментальный проект биофильтров пропускной способностью 200--1400 м3/сутки с загрузкой из пеностекольных блоков 375X375 мм, из гофрированных листов полиэтилена размером 500X500 мм типа «сложная волна» и асбестоцементных листов размером 974X2000 мм.

Основные типы биофильтров

Капельные биофильтры. В капельном биофильтре сточная вода подается в виде капель или струй. Естественная вентиляция воздуха происходит через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде; обычно она колеблется от 0,5 до 1 м3 воды на 1 м3 фильтра.

Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, отфильтровавшаяся через толщу биофильтра, попадает в дренажную систему и далее по сплошному непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых выносимая пленка отделяется от очищенной воды.

При нагрузке по загрязнениям больше допустимой поверхность капельных биофильтров быстро заиливается, и работа их резко ухудшается.

Проектируются они круглыми или прямоугольными в плане со сплошными стенками и двойным дном: верхним в виде колосниковой решетки и нижним -- сплошным.

Высота между донного пространства должна быть не менее 0,6 м для возможности периодического его осмотра. Дренаж биофильтров выполняют из железобетонных плит, уложенных на бетонные опоры. Общая площадь отверстий для пропуска воды в дренажную систему должна составлять не менее 5--8% площади поверхности биофильтров. Во избежание заиливания лотков дренажной системы скорость движения воды в них должна быть не менее 0,6 м/с.

Уклон нижнего днища к сборным лоткам принимается не менее 0,01, продольный уклон сборных лотков (максимально возможный по конструктивным соображениям) -- не менее 0,005.

Стенки биофильтров выполняются из сборного железобетона и возвышаются над поверхностью загрузки на 0,5 м для уменьшения влияния ветра на распределение воды по поверхности фильтра. При наличии дешевого загрузочного материала и свободной территории небольшие биофильтры можно устраивать без стенок; фильтрующий материал в этом случае засыпается под углом естественного откоса. Наилучшими материалами для засыпки биофильтров являются щебень и галька.

Все примененные для загрузки естественные и искусственные материалы должны удовлетворять следующим требованиям: при плотности до 1000 кг/м3 загруженный материал в естественном состоянии должен выдерживать нагрузку на поперечное сечение не менее 0,1 МПа, не менее 10 циклов испытаний на морозостойкость; кипячение в течение 1 ч в 5%-ном растворе соляной кислоты; материал не должен получать заметных повреждений или уменьшаться в весе более чем на 10% первоначальной загрузки биофильтров; загрузка биофильтров по высоте должна быть одинаковой крупности, и только для нижнего поддерживающего слоя высотой 0,2 м следует применять более крупную загрузку (диаметром 60--100 мм).

Высоко нагружаемые биофильтры . В начале текущего столетия появились биофильтры, которые у нас в стране получили название аэрофильтры, а за рубежом -- биофильтры высокой нагрузки. Отличительной особенностью этих сооружений является более высокая, чем в обычных капельных биофильтрах, окислительная мощность, что обусловлено незаиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря более крупному загрузочному материалу и повышенной в несколько раз нагрузке по воде.

Повышенная скорость движения сточной воды обеспечивает постоянный вынос задержанных трудно окисляемых нерастворимых примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела фильтра.

В СССР конструкции аэрофильтров были предложены Н.А. Базякиной и С.Н. Строгановым и в 1929 г. построены на Кожуховской биологической станции.

Конструктивными отличиями высоко нагружаемых биофильтров являются большая высота слоя загрузки, большая крупность ее зерен и особая конструкция днища и дренажа, обеспечивающая возможность искусственной продувки материала загрузки воздухом.

Между донное пространство должно быть закрытым, и туда подается вентиляторами воздух. На отводных трубопроводах должны быть предусмотрены гидравлические затворы глубиной 200 мм.

Особенностями эксплуатационного характера являются необходимость орошения всей поверхности биофильтра с возможно малыми перерывами в подаче воды и поддержание повышенной нагрузки по воде на 1 м2 площади поверхности фильтра (в плане). Только при этих условиях обеспечивается промывка фильтров.

Высоко нагружаемые биофильтры могут обеспечить любую заданную степень очистки сточных вод, поэтому применяются как для частичной, так и для полной их очистки.

Как показали исследования, в одинаковых условиях (одинаковая высота и крупность загрузки, характер загрязнений, степень очистки сточных вод и т. д.) высоко нагружаемые биофильтры по сравнению с капельными имеют большую пропускную способность по объему пропускаемой через них воды, а не по количеству переработанных (окисленных) загрязнений. Повышенная же эффективность этих биофильтров по извлечению из сточных вод загрязняющих веществ достигается при увеличении высоты слоя загрузки, увеличении крупности зерен загрузки и лучшем воздухообмене.

Башенные биофильтры . Эти биофильтры имеют высоту 8--16 м и применяются для очистных станций пропускной способностью до 50 000 м3/сутки при благоприятном рельефе местности и при БПКго очищенной воды 20--25 мг/л. В отечественной практике они распространения не получили.

Вентиляция биофильтров

Естественная вентиляция в биофильтрах происходит вследствие разницы температур наружного воздуха и тела биофильтра.

Основная масса воздуха поступает в тело биофильтра через между донное пространство и сверху вместе с водой по мере ее движения в фильтре. Если температура сточных вод выше температуры воздуха, то устанавливается восходящий (от дренажа к поверхности) поток воздуха, при обратном соотношении---нисходящий; при равенстве температур вентиляция может совсем прекратиться. Интенсивность вентиляции биофильтров зависит также от высоты слоя фильтрующей загрузки, размеров ее зерен и высоты между донного пространства. Чем мельче загрузка, тем хуже условия вентиляции.

Исследования, проведенные Н.А. Базякиной, показали, что объем кислорода воздуха, используемого в биофильтрах, как и в других сооружениях биологической очистки, не превышает 7--8%.

Температура внутри биофильтра не должна быть ниже 6° С, иначе окислительный процесс практически прекращается.

В установках большой и средней пропускной способности необходимая температура поддерживается вследствие постоянного притока сточных вод, температура которых почти всегда выше 8° С. Поэтому такие фильтры обычно не требуют утепления. Небольшие фильтры, как уже отмечалось, приходится размещать в утепленных помещениях во избежание их переохлаждения, особенно в ночное время, когда приток сточной воды уменьшается.

Распределение сточных вод по биофильтрам

Надежная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Орошение производится распределительными устройствами, которые подразделяются на две основные группы: неподвижные и подвижные.

К неподвижным распределителям относятся дырчатые желоба или трубы и разбрызгиватели (спринклеры), к подвижным -- качающиеся желоба, движущиеся наливные колеса и вращающиеся реактивные распределители (оросители).

В отечественной и зарубежной практике наибольшее распространение получили спринклерное орошение и орошение при помощи подвижных оросителей.

Спринклерное орошение . Спринклерная система состоит из дозирующего бака, разводящей сети и спринклеров.

Спринклеры (спринклерные головки) -- специальные насадки, надетые на концы стояков, которые ответвляются от водораспределительных труб, уложенных на поверхности или в теле биофильтра. Отверстия спринклерных головок невелики -- обычно 19, 22 и 25 мм. Во избежание коррозии спринклеры изготовляют из бронзы или из латуни.

Достоинством головки этого типа является, то, что опора, к которой прикреплен отражательный обратный конус, находится в стороне от движущейся струи и не мешает ее действию.

Дозирующий бак автоматически подает воду в спринклерную сеть под постоянным напором. Продолжительность опорожнения бака (период орошения), зависящая в основном от вместимости бака и размеров выпускаемой трубы, всегда одинакова; продолжительность же наполнения бака зависит только от притока сточных вод, который колеблется в течение суток. Поэтому орошение биофильтра производится периодически, через неровные по продолжительности интервалы. Во избежание сильного охлаждения не обогреваемых биофильтров интервал между орошением не должен превышать 5--8 мин.

При большой площади биофильтры разделяются на секции с самостоятельными распределительными сетями и отдельными дозирующими баками.

В отечественной практике наибольшее распространение получил дозирующий бак с сифоном. Преимущество его перед другими состоит в том, что он совершенно не имеет движущихся частей.

Выпускная труба из дозирующего бака представляет собой сифон, верхний срез которого возвышается над дном бака. Внутри дозирующего бака расположен опрокинутый стакан, установленный на подставках и не доходящий до дна бака. К стакану в верхней его части присоединены две трубки: одна из них -- воздушная трубка -- заканчивается открытым концом в баке, другая трубка, представляющая собой вентиляционный затвор, или регулятор напора, заканчивается открытым концом, выведенным выше максимального уровня воды в баке. Кроме того, регулятор напора присоединен патрубком к главной выпускной трубе. В верхней части бака имеется переливная труба, диаметр которой принимается в соответствии с притоком воды в бак.

Действие автоматического сифона заключается в следующем. Вначале вода в баке стоит на низшем уровне А, соответствующем нижнему колену воздушной трубки. В сифоне вода в это время стоит на уровне выходного отверстия спринклеров; регулятор напора заполнен водой до уровня на котором он присоединен к стакану. По мере поступления воды горизонт ее в баке повышается, причем давление под стаканом и в отводной трубе остается равным атмосферному до тех пор, пока уровень ее не дойдет до отверстия воздушной трубки. После этого выход воздуха из-под стакана прекращается и воздушное давление в нем по мере заполнения бака начинает возрастать.

Когда горизонт воды в баке достигнет наивысшего уровня, а горизонт воды под стаканом достигнет верхнего края отводной трубы, уровень воды в регуляторе напора упадет до нижнего его колена В2, а в главном сифоне -- до уровня Б2> также почти у нижнего колена. При этом давление воздуха под стаканом, в главной трубе сифона и в регуляторе напора будет равно высоте столба воды. В следующий момент гидравлический затвор в регуляторе напора прорвется, давление под стаканом упадет до атмосферного, вследствие чего вода из бака устремится в главную трубу и будет вытекать из нее до тех пор, пока горизонт в баке не упадет до уровня А нижнего колена воздушной трубки. Как только через нее воздух проникнет под стакан, действие сифона приостановится, причем колено регулятора напора, засасывающего во время действия сифона воду из главной отводной трубы, останется заполненным водой.

Для регулирования наивысшего уровня воды в баке, при котором начинают действовать сифоны, верхнюю часть регулятора напора делают подвижной на сальниках; поднимая или опуская переливной патрубок регулятора напора, можно установить начало действия сифона как раз в тот момент, когда уровень воды под стаканом дойдет до края выпускной трубы. Отводную трубу от бака можно устраивать с гидравлическим затвором и без него. Диаметр сифона равен диаметру разводящей трубы. Внутренний диаметр колокола принимают равным двум диаметрам трубы сифона, но он может быть и больше.

По мере вытекания воды из бака радиус действия спринклера, зависящий от напора, постепенно уменьшается и таким образом орошается вся площадь круга вокруг спринклера. Для более равномерного распределения воды по орошаемой площади дозирующему баку придают такую форму, при которой площадь его горизонтальных сечений на различных уровнях пропорциональна расходу воды из бака в данный момент. Этому требованию с достаточным приближением удовлетворяет форма опрокинутой усеченной пирамиды. Площадь нижнего ее сечения назначают в зависимости от размера выходной трубы; площадь верхнего сечения (соответствующего уровню воды при максимальном напоре) определяется из указанного соотношения.

Расчет водораспределительной системы сводится к определению расхода воды из каждого разбрызгивателя (спринклера), определению необходимого их числа, диаметра разводящей сети, емкости и времени работы дозирующего бака.

Распределительную сеть укладывают или на специальные столбы, или прямо на фильтрующую загрузку на глубине 0,7--0,8 м от поверхности биофильтра. Сеть укладывают с уклоном с тем, чтобы ее можно было опорожнить в случае необходимости. В конце каждой трубы целесообразно иметь пробку, через которую можно было бы промыть трубопровод чистой водой. Спринклерные головки устанавливают обычно на 0,15 м выше поверхности загрузки фильтра.

Реактивные вращающиеся водораспределители (оросители). Вращающийся ороситель состоит из двух или четырех дырчатых труб, консольно закрепленных на общем стояке.

Вода из распределительной камеры поступает под некоторым напором в стояк, установленный на шариковых подшипниках; стояк может свободно вращаться вокруг своей вертикальной оси. Из стояка вода поступает в радиально расположенные трубы и через отверстия в них выливается на поверхность биофильтра. Под действием реактивной силы, возникающей при истечении воды из отверстий, распределитель вращается.

Такие реактивные оросители получили большое распространение за рубежом (в Англии, ФРГ и Чехословакии) и вполне себя оправдали. У нас они применяются на очистных станциях во многих городах (Харькове, Славянске, Шереметьеве, Владимире и др.).

Союзводоканалниипроектом разработаны типовые проекты вращающихся оросителей для биофильтров диаметром 15, 21, 27 и 29 м.

Для приведения в действие реактивного оросителя необходим сравнительно небольшой напор (0,2--1 м), что является одним из достоинств этого устройства. Кроме того, при реактивных оросителях отпадает необходимость в устройстве дозаторов.

Диаметр отверстий в радиально расположенных трубах обычно колеблется от 10 до 15 мм; расстояние между отверстиями увеличивается от периферии к центру, что обеспечивает более равномерное орошение биофильтра.

Биофильтры с загрузкой из пеностекла или пластмассы

Сооружения биологической фильтрации, особенно с прикрепленным биоценозом, хорошо себя зарекомендовали в работе с малыми расходами и пиковыми нагрузками по органике. Они просты, удобны, в них за короткое время (до 30 минут) происходит скоростное изъятие загрязнений. На традиционных биофильтрах в качестве фильтрующей массы применяют объемный материал: щебень, гравий, керамзит. Блочные загрузки из блоков пеностекла имеют преимущества в технологическом, конструктивном и эксплуатационном отношениях по сравнению с другими материалами. Пеностекло - это теплоизоляционный строительный материал. Он отличается механической прочностью, влаго-, паро- и газонепроницаемостью, огнестойкостью, морозостойкостью, долговечностью, устойчивостью к воздействию кислот и продуктов разложения. Площадь адсорбционной поверхности пеностекла в зависимости от величины перфорации с учетом малых и больших пор- 200 кв.м/куб.м. Пеностекло имеет чрезмерно развитую поверхность, удерживает в единице объема большое количество биопленки, чем какой-либо другой вид загрузочного материала, что способствует интенсивному изъятию загрязнений из сточных вод. Распределение сточной воды по поверхности биофильтра осуществляется с помощью реактивного оросителя. Пластмассовые загрузки используются в виде жесткой (кольца, обрезки труб и т.д.), жестко-блочной (из плоских и гофрированных листов), а также мягкой (из пластмассовых пленок) засыпки. Таким образом, загрузка обладает высокой пустотностью, большой сорбционной поверхностью и относительно малым коэффициентом сцепления биопленки с поверхностью загрузки, что создает условия для образования тонкого слоя биопленки.

Пластмассовая загрузка исключает заиливание биофильтров, значительно увеличивает объем поступающего воздуха, что способствует повышению окислительной мощности. Кроме достоинств, биофильтры обладают и рядом недостатков. Так, высокая не равномерность поступления сточных вод от малых объектов крайне отрицательно влияет на работу биофильтров и аэротенков. В биофильтрах происходит подсыхание биопленки и наблюдается не равномерность температурного режима ее работы, создаются условия, способствующие заиливанию загрузки. Во избежания этих явлений в часы минимального притока сточных вод осуществляют рециркуляцию очищенных сточных вод, что приводит к дополнительным энергозатратам на перекачку стоков.

Биодисковые фильтры

Эти сооружения предназначены для расхода сточных вод до 1000 куб.м в сутки. В качестве загрузки для биодисковых фильтров рекомендуются перфорированные диски, изготовленные из объемных синтетических материалов пониженной плотности (пенопласта, пеностекла). Современные биодисковые фильтры представляют собой многосекционную емкость, наполненную вращающейся загрузкой. Диски набирают на горизонтально расположенном валу с расстоянием между ними 15-20 мм. Диски обычно погружены в очищаемую жидкость на 0,45Д (30--45 %), иногда до 0,75Д. Диаметр дисков находится в пределах от 0,4 до 3,0 метров в зависимости от производительности установки. Принцип действия данного сооружения следующий: диски - основной компонент сооружения - находится в постоянном вращательном движении, причем их поверхность перфорации покрывается биопленкой, которая находится в прикрепленном состоянии. Биомодули, создавая обширную поверхность, обеспечивают гидродинамические условия, при которых отторгнутая биопленка продолжает работать, находясь во взвешенном состоянии. Здесь совмещается режим работы прикрепленного биоценоза и взвешенного (активного) ила. За пределами зоны очищаемой воды микроорганизмы, находясь в биопленке, получают кислород непосредственно из атмосферы. При одинаковых категориях обрабатываемых городских сточных вод и заданном эффекте очистки время аэрации в БДФ составляет 60-90 минут, а в классических аэротенках - около 6 часов. Биодисковые фильтры компактны, конструктивно просты, устойчивы к различного рода перегрузкам, имеют низкие удельные энергозатраты. Кроме того, при использовании этих фильтров практически отпадает необходимость насосной станции, так как гидравлические потери сооружений не значительны. Биодисковые фильтры - многосекционные сооружения (3-6 секций). Основная масса удаленных биоразлагаемых загрязнений приходится на первую и вторую секции БДФ. Процесс снижения аммонийного азота и нитрификации успешно протекает в третьей и последующих секциях. Удаление азота достигает 40 %, что выше, чем в классических биофильтрах и аэротенках. Однако в очищенных водах присутствуют азотистые соли (биогенные соединения), поэтому в некоторых случаях требуется доочистка. Из биодисковых фильтров биологическая пленка потока обработанной жидкости выносится во вторичный отстойник. Разделение биопленки осуществляется гравитационным способом. Вторичные отстойники рекомендуется оборудовать тонкослойными модулями.

Биофильтраторы

Компактная установка биофильтратор предназначена для малых расходов сточных вод (от 2 до 600 куб.м в сутки) и обеспечивает полную биологическую очистку от разнообразных загрязнений в широком диапазоне концентраций. Установка имеет низкие капитальные вложения и энергетические затраты. Она проста и экономична в эксплуатации, не требует специального постоянного ухода.Биофильтратор состоит из аэрационной (сорбционной) зоны и зоны осветления. В сорбционной зоне установлены вращающиеся перфорированные диски из пенопласта или подобных материалов. Диски вращаются мотор-редукторм с частотой вращения 10-15 об/мин. За счет градиента давления жидкость и отторгнутая биопленка переливаются через отверстие, устроенное в разделительной перегородке. Укрупненные хлопья активного ила из зоны осветления опускаются вниз и через отверстия подсасываются в аэрационную зону за счет кинематики течения. Таким образом, происходит постоянный обмен биомассы между зонами сорбции и осветления. Очищаемая жидкость поднимается к лотку и отводится за пределы сооружения. Для интенсификации биотехнологии в биофильтре используется струйная аэрация, что позволяет исключить механическую систему привода мотор-редуктор. Такой метод очистки применяется дла расходов сточных вод от 0,5 до 1,5 куб.м в сутки и более, с загрузкой от низких до высоких значений концентрации биоразделяемых соединений (БПК). Струйный биофильтр работает следующим образом. Сточные воды, прошедшие механическую очистку, попадают в аэрационную зону, куда также поступает смесь осветленной жидкости и циркуляционного активного ила. Эта смесь из нижней части осветляется забирается по трубопроводу насосом и через струйный аэратор шахтного типа сбрасывается в аэрационную зону биофильтра. Струя потока вводится в межсекционное пространство (Рис. 4) ниже свободной поверхности на 15-30 см и отражается от специально спланированной поверхности дна. В результате возникают интенсивные воздушные восходящие потоки, которые приводят к движению биоротора. После контакта очищаемой жидкости в аэрационной зоне смесь или и сточной воды поступает на осветление. Зона осветления разделена на три отсека. В дегазационно-отстойной зоне при низходящем потоке отделяются выносимые из аэрационной зоне пузырьки газа малых размеров. Здесь укрупненные частицы ила осаждаются на дно отстойника и возвращаются в аэрационную систему. Далее смесь поступает во вторую зону отстаивания, где происоходит основной процесс разделения твердой и жидкой фаз с образованием взвешенного слоя, углубляющего процесс биофильтрации. Из этой зоны укрупненные хлопья активного ила также поступают в камеру аэрации. В последующем отделении обеспечивается окончательная очистка сточных вод. Вторая зона отстаивания работает в режиме отстойника. Осаждающиеся хлопья активного ила по стенке емкости сползают в зону их забора насосным агрегатом. Осветленные сточные воды через сбросный лоток отводятся на обеззараживание.

Сравнение биологических очистных систем

Каждый, кто хотя бы раз сталкивался с проблемой очистки канализационных, промышленных и бытовых стоков, знаком с понятиями "биофильтр" и "аэротенк". Эти сооружения, применяемые в рамках биологических процессов очистки воды, в последние годы обрели довольно высокую популярность. Их активно применяют в частном жилом строительстве, обеспечивая автономную очистку сточных вод.

На чём основывается биологическая методика очистки сточных вод? В её основе лежит использование особого рода микроорганизмов, способных перерабатывать растворенные в воде вещества органического и неорганического происхождения в рамках процессов собственного жизнеобеспечения. В частности, эти микроорганизмы способны разрушать органические соединения (нитриты, сульфиты, сероводород), разлагая их на составные элементы - воду, ионы, двуокись углерода и пр. Не подлежащие разложению на составные компоненты вещества становятся частью биомассы. А сам процесс разрушения веществ органического происхожденияименуют биохимическим окислением. Именно способностью к окислению и определяется возможность биохимического разрушения тех или иных веществ.

Биофильтр или аэротенк - оба эти варианта сооружений биологической очистки служат одной цели - очистке сточных вод до безопасного для окружающей среды состояния, до норм ПДК.

1. Биофильтр

Биофильтр представляет собой очистные сооружения , заполненные фильтрующими элементами и снабженные определённым запасом микроорганизмов, образующих на поверхности особую пленку. Фактически, именно жизнедеятельность присутствующей в составе этого сооружения биомассы и определяет эффективность процессов очистки сточных вод.

Все биофильтры делятся на категории , согласно:

  • заявленному количеству степеней очистки выделяют одно- и двухступенчатные варианты;
  • по принципу обеспечения доступа воздуха - принудительного (искусственно вентилируемые) и с естественной вентиляцией;
  • степени очистки (с полной или частичной загрузкой);
  • типу загрузочного материала/наполнителя - с зернистым заполнением (используют керамзит, щебень, шлак, гальку, либо плоскостным - заполненным сетками, пластиковыми листами, металлическими листовыми материалами, сборными металлическими блоками (ячеистыми или решетчатыми), обрезками труб, засыпными элементами из пластика, керамики, металлов.

Все биофильтры с объёмной загрузкой можно разделить на:

  • капельные - мелкофракционные, с высотой засыпки в 1-2 м и размером элементов не более 30 мм;
  • высоконагрузочные - аэрационные, обладающие более интенсивным воздействием, оснащаемые принудительной системой вентиляции (размер фракций в этом случае достигает 60 мм, а высота загрузки - 4 м);
  • башенные - глубинные сооружения, высота загрузки в которых достигает 18 м при размерах фракций до 80 мм.

Помимо этого, существует категория погружных биофильтров, позволяющих обеспечить локальную фильтрацию стоков по месту требования. Они представляют собой барабанные или винтовые конструкции с покрытием из биопленки, обеспечивающей необходимый уровень содержания микроорганизмов в ходе очистки.

2. Аэротенк

Представляет собой аэрируемые очистные сооружения из стеклопластика или железобетона, процесс очистки стоков в которых производится за счёт смешивания активных иловых биомасс с аэрированными (насыщенными кислородом) сточными водами.

Аэротенки могут обеспечивать различный уровень очистки воды - от частичного (с удалением элементов, вызывающих загнивание и очищением до уровня разложения стоков на воду, нитраты и другие компоненты) до полного, обеспечивающего глубокую биологическую очистку воды .

Аэротенки оснащаются различными аэрационными приспособлениями - пневматическими, механическим, смешанными, обеспечивающими насыщение сточных масс кислородом, необходимым для эффективной их очистки.

Аэротенк может вводить стоки по принципу проточного или полупроточного поступления, контактным путём или на основании переменной рабочей подачи.

Существуют варианты с разным количеством ступеней очистки - обычно не более двух.

Помимо этого, они могут иметь различную нагрузку на активную биомассу и подразделяются на подвиды согласно выбранному гидродинамическому режиму :

  • вытесняющие,
  • смесительные,
  • с рассредоточенным выпуском.

Что выбрать?

Биофильтры и аэротенки - идеальное решение для почв, в составе которых преобладает глина, либо на участках с высоким уровнем грунтовых вод. Фактически, это высокотехнологичные разработки, ориентированные на максимально глубокую очистку стоков - в пределах 60 - 98% .

Если говорить о сравнении биофильтра или аэротенка, то всё зависит от того, каковы будут условия эксплуатации очистных сооружений. Если на участке нужна простая и энергонезависимая система очистки - стоит отдать предпочтение биофильтрам. Если же основной упор делается на качество - стоит выбрать аэротенк, способный обеспечить наиболее высокий уровень очистки стоков, но требующий постоянного доступа к электропитанию и требующий поддержания определённого уровня влажности в системе.

Argel

Биологический фильтр - резервуар, в котором стоки фильтруется через загрузочный материал, покрытый биологической пленкой, которая состоит из колоний микроорганизмов.

Микрофлора, обитающая в биопленке, разлагает органические вещества, применяя их как источник питания и получения энергии. Омертвевшая биологическая пленка отслаивается, смывается протекающей сточной водой и выносится из биофильтра. В качестве загрузки используются материалы с высокой пористостью, малой плотностью, высокой удельной поверхностью (щебень, гравий, шлак, керамзит, металл и пластиковые сетки, скрученные в рулоны).

Биопленка, в биофильтрах выполняет те же функции, что и активный ил, она адсорбирует и перерабатывает биологические вещества, находящиеся в сточных водах.

Окислительная мощность биофильтров ниже аэротенков .

В состав биофильтра входят следующие составные части:
а) фильтрующая загрузка (тело фильтра), состоит из щебня, шлака, керамзита, гравия, пластика, асбестоцемента, помещенная обычно в резервуаре с водопроницаемыми или водонепроницаемыми стенками;
б) водораспределительное устройство, обеспечивает равномерное орошение сточными водами поверхности загрузки биологического фильтра;
в) дренажное устройство для удаления профильтровавшейся воды;
г) воздухораспределительное устройство, с помощью которого поступает кислород, необходимый для окислительного процесса.

Принцип работы биофильтра.

Сточные воды, пройдя первичную механическую очистку в отстойнике, где были удалены крупные тяжелые фракции загрязняющих веществ, поступают на биологическую очистку. Очистка в биофильтре осуществляется следующим образом. Загрязненная вода, проходя через фильтрующую загрузку, оставляет в ней нерастворенные примеси, которые не ушли в осадок в первичном отстойнике, а также коллоидные и растворенные органические вещества, сорбируемые биологической пленкой. Колонии микроорганизмов, питаясь веществами органического происхождения, получают энергия для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как материал для увеличения своей численности. Таким образом, происходит одновременно и очищение сточных вод и рост колонии. Необходимый для биохимического процесса кислород воздуха поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра.

На эффективность очистки сточных вод в биофильтрах влияют:
- БПК (биологическая потребность в кислороде), очищаемой сточной воды
- Природа загрязнения веществ
- Скорость окисления
- Интенсивность дыхания микроорганизмов
- Толщина биопленки
- Состав, обитающих в ней микроорганизмов
- Температура сточных вод в биофильтре

Биофильтры классифицируют на:
1. Двухступенчатые биофильтры. Они применяются для достижения высокой степени очистки, когда нельзя увеличить высоту биофильтра.
2. Биофильтры с капельной фильтрацией. Они имеют низкую производительность, но обеспечивают полную очистку. Их используют для очистки вод, до 1000 м3/сутки, при БПК не более 200 мг/л.

Сооружения биологической очистки сточных вод. Биофильтры

Биофильтры. Представляют собой прямоугольные или круглые в плане сооружения со сплошными стенками и двойным дном: верхним в виде колосниковой решетки, и нижним сплошным. Колосниковая решетка или дырчатое днище, дренаж биофильтров устраивается из железобетонных плит. Общая площадь отверстий дренажа принимается не менее 5—8% площади поверхности фильтра.


Фильтрующим материалом служит щебень, галька горных пород, керамзит, шлак. Загрузка фильтрующего слоя по всей его высоте должна производиться материалом одинаковой крупности (табл.61).


Таблица 61. Крупность зерен загрузочного материала для биофильтра (СНиП II-Г. 6—62)


Мелочи в загрузочном материале должно быть не более 5%. Нижний поддерживающий слой во всех типах биофильтров должен применяться с размерами 60—100 мм.


Орошение биофильтров сточными водами производится через небольшие равномерные промежутки времени. Распределение сточных вод может быть капельным, струйным или в виде тонкого слоя.


Кислород, обеспечивающий жизнедеятельность бактерий, поступает в тело фильтра естественной или искусственной вентиляцией. Количество кислорода, получаемое с 1 м3 фильтрующего материала в сутки для снижения БПК сточных вод, называется окислительной мощностью. Она зависит от температуры сточных вод, наружного воздуха, характера загрязнений (табл. 62).


Таблица 62. Окислительная мощность, г, кислорода в сутки на 1 м3 загрузочного материала биофильтров (СНиП II-Г. 6—62)


Примечания: 1. Указанные в табл. 62 величины окислительной мощности определены для сточных вод со среднезимней температурой +10°. При другой среднезимнеи температуре сточных вод значения окислительной мощности следует увеличивать илн уменьшать пропорционально отношению фактической температуры к 10°С


2. При значении часового коэффициента неравномерности притока более 2, объем фильтрующего материала следует увеличить пропорционально отношению фактического коэффициента неравномерности К=2.


При среднегодовой температуре наружного воздуха ниже + 10°С и коэффициенте рециркуляции сточных вод более 4, а также при среднегодовой температуре воздуха до +3°С биофильтры любой производительности, и при среднегодовой температуре от +3 до +6°C биофильтры с производительностью до 500 м3 в сутки необходимо размещать в отапливаемых помещениях с расчетной температурой внутреннего воздуха на +20С выше температуры сточных вод и пятикратным воздухообменом в час. При производительности более 500 м3/сутки и среднегодовой температуре воздуха от +3 до +6°C биофильтры можно размещать в неотапливаемых помещениях облегченной конструкции.


При поступлении сточных вод с перерывами в течение суток строительство биофильтров в неотапливаемых помещениях или открытого типа должно обосновываться теплотехническим расчетом. При этом необходимо принимать во внимание опыт эксплуатации очистных сооружений, находящихся в данном районе или в других районах с аналогичными условиями.


Окислительную мощность биофильтра ОМ можно определить по формулам:


при работе с рециркуляцией


, (135)

без рециркуляции


, (136)

где LCM — БПК5 смеси поступающих сточных вод, мг/л;

Ld — БПКб поступающих на очистку сточных вод, мг/л;

Lt — БПК5 очищенных сточных вод, мг/л;

QcyT — суточный расход сточных вод, м3/сутки;

F — площадь фильтра, м2;

Н — высота загрузки фильтра, м;

q — расход сточных вод, л/сек;

n — коэффициент рециркуляции, определяемый по формуле (133).


При расчете биофильтров для промышленных сточных вод предприятий пищевой промышленности можно рекомендовать коэффициент скорости биохимического окисления Кс.б, указывающий на интенсивность прироста биологической пленки, определяемый по формуле


Кс.б = 21/a, (137)

где а — разность, проц., между ХПК и БПК20 сточных вод.


Низкие значения коэффициента указывают на нецелесообразность биохимических способов очистки сточных вод. Обратная величина коэффициента скорости биохимического окисления характеризует скорость прироста биологической пленки.


Коэффициент скорости биохимического окисления смеси сточных вод с различным размером загрязнений определяется по формуле


, (138)

где Q1, Q2...Qn — расходы различных по концентрации сточных вод;

а1, а2,...an — соответствующие разности, проц., между ХПК и БПК20.


Чем меньше коэффициент, тем больше интенсивность фактора прироста биологической пленки, поэтому коэффициент оказывает влияние на выбор фильтрующего материала (табл. 63).


Таблица 63. Зависимость вида загрузочного материала от коэффициента скорости биохимического окисления


Биофильтры подразделяются на капельные, высоконагружаемые, аэрофильтры, башенные.


Отличительной особенностью капельных биофильтров является небольшой диаметр фракций загрузочного материала (30— 50 мм) и высота загрузки (2 м), при этом нижний поддерживающий слой высотой 0,2 м принимается размером 60—100 мм, а также низкая нагрузка по сточной воде от 0,5 до 1,0 мг на 1 мг загрузки фильтра.



Высоконагружаемые биофильтры отличаются от капельных значительно большей гидравлической нагрузкой. Для капельных биофильтров нагрузка на 1 м2 поверхности в сутки составляет 1—2 м3 сточных вод, для высоконагружаемых — 10—30 м3 на 1 м2 поверхности в сутки, т. е. в 10—30 раз больше.


Более высокая окислительная мощность высоконагружаемых биофильтров обусловливается незаиляемостыо, лучшим обменом воздуха, что достигается благодаря более крупному загрузочному материалу и повышенной нагрузкой по воде. Значительные скорости прохода воды через загрузочный материал обеспечивают постоянный вынос трудноокисляемых примесей и отмирающей биопленки. Крупность частиц загрузки принимается размером 40—60 мм, что обеспечивает большой объем пор.


Конструктивные и эксплуатационные особенности высоконагружаемых биофильтров и их отличие от капельных следующие:

  1. высота слоя фильтрующей загрузки доходит до 4 м. Количество загрязнений, вносимых на 1 м2 площади фильтра в сутки, зависит от высоты фильтра. При высоте его 4 м окислительная мощность составляет 2400 г 02/м2, 3м — 2200, 2,5 м — 2000, 1 м— 1800 г 02/м2;
  2. крупность зерен доходит до 65 мм по всей высоте загрузки;
  3. искусственная вентиляция фильтра обеспечивается особой конструкцией днища и дренажа (ограждение глухими стенами с гидрозатвором) ;
  4. интервалы в орошении фильтра сточной водой должны быть сокращены до минимума. Нагрузка по воде должна быть повышенной и постоянной;
  5. направление концентрированных сточных вод на фильтры недопустимо, поэтому для поддержания повышенной нагрузки по воде необходимо их разбавление условно чистыми или очищаемыми водами при помощи рециркуляции;
  6. высоконагружаемые биофильтры могут работать на заданную степень очистки сточных вод;
  7. применяются как для полной, так и для частичной очистки сточных вод.

Высоконагружаемые биофильтры могут быть одно- (рис. 19) и двухступенчатые.


Рис. 19. Схема одноступенчатых высоконагружаемых биофильтров: П.О. — первичный отстойник; Н.С. — насосная станция; Б — биофильтр; В.О. — вторичный отстойник, К.Б, — коигакгиый бассейн; 1,2 — возможные варианты рециркуляции очищенной жидкости, 3 — удаление избыточной биопленки; 4 — хтораторная; 5 — очищенные и обеззараженные сточные воды иа выпуск.


Применение двухступенчатых высоконагружаемых биофильтров рекомендуется при благоприятном рельефе местности и при необходимости более глубокой очистки сточных вод. Разновидностью высоконагружаемых биофильтров могут быть сооружения перемежающейся фильтрации (рис. 20).


Рис. 20. Схема двухступенчатых высоконагружаемых биофильтров с перемежающейся фильтрацией: ПО — первичный отстойник, K1, К2 — камеры переключения, ИС — насосная станция, Б — биофильтры, ВО — вторичные отстойники, КБ контактный бассейн, 1 — удаление избыточной бнопленки, 2 — хлораторная, 3 — очищенные сточные воды на выпуск


Разновидностью высоконагружаемых биофильтров являются аэрофильтры. Особенность фильтров этого типа.— большая высота (3—4 м) и принудительная вентиляция, которая может осуществляться вентиляторами низкого давления.


Материал загрузки тела аэрофильтра должен быть по возможности гладким. Аэрофильтры устраиваются двух- и трехслойные. Нижний слой рекомендуется устраивать толщиной 0,2 м из кусков загрузочного материала размером 50—70 мм, а верхний — размером 30—40 мм (рис. 21).


Рис. 21. Схема аэрофильтра: 1 — загрузка, 2 — реактивный водораспределитель, 3 — гидрозатвор


Устойчивой работы и высокого эффекта очистки на аэрофильтрах можно достичь, если сточные воды, направляемые на очистку, будут иметь БПК не более 150 мг/л. Расчет аэрофильтров можно проводить по их окислительной мощности (табл. 64).


Таблица 64. Окислительная мощность, г, кислорода на 1 м3 загрузки аэрофильтра (СНиП II-Г. 6—62)


Данные табл. 64 определены для сточных вод со среднезимней температурой +10°C. При температуре сточных вод более или менее +10оС окислительную мощность аэрофильтра необходимо увеличивать или уменьшать соответственно пропорционально отношению фактической температуры к+10°С.

Биофильтр – это обладающий биологическим воздействием реактор неподвижного слоя для очистки воздуха или воды. Главной его целью является фильтрация газообразных примесей и растворенных в очищаемом веществе субстанций, а не твердых частиц.

Идея очищать отработанный воздух биологическим путем возникла еще в семидесятые годы двадцатого века, однако впервые была применена на практике лишь в 1980 году благодаря интенсивному исследованию ученых. Основываясь на микробиологической методике, несколько лет спустя была разработана концепция модульной установки с возможностью универсального применения.

Биофильтрация представляет собой относительно простой и экономичный процесс очистки отработанного воздуха, содержащего летучие органические соединения и неприятные запахи. При этом микроорганизмы разлагают вредные и пахучие вещества в такие безобидные продукты как двуокись углерода и воду. Биофильтры используются преимущественно для очистки воздуха. Для специфичных случаев также возможна биологическая очистка сточных вод, основанная по аналогичному принципу.

Биологическая очистка отработанного воздуха использует микроорганизмы, чтобы удалять вредные вещества из воздуха путем микробиологического распада. В роли расщепителей выступают различные микроорганизмы, такие как бактерии или грибы.

Весь процесс сводится к следующему: микроорганизмы превращают вредные вещества с помощью кислорода в углекислоту и воду, а это значит, что речь идет о реакции распада материи.

Эта реакция может протекать только тогда, когда вредные вещества из газообразного состояния переходят в жидкое, так как вода составляет жизненное пространство микроорганизмов. Именно поэтому переход вредных веществ в жидкое состояние является важнейшим фактором всех биологических методов. Выживают лишь те микроорганизмы, которые могут лучшим образом приспособиться к господствующим условиям и к питательной базе. При этом всегда речь идет о смеси из различных гетеротрофных видов, которые используют вредные вещества в воздухе как источник углерода и энергии.

Виды и способы эксплуатации биофильтров

Существуют различные виды биофильтров в зависимости от способа их эксплуатации и области применения. Например:

  • плоский рукавный,
  • контейнерного типа,
  • для колодцев,
  • этажный,
  • сотовый,
  • башенный.

Но во всех типах устройств отработанный воздух проходит через какой-либо фильтрующий материал.

В некоторых случаях перед биофильтром расположена воздухопромывная камера, в которой газ приобретает относительную влажность равную почти 100%. Это должно предотвращать высыхание материала. Кроме того, при необходимости в воздухопромывной камере происходит удаление из газа твердых частиц. Насыщенный водяным паром и очищенный от пыли сырой газ поступает непосредственно в биофильтр, в котором находится фильтрующий материал. Благодаря дополнительному орошению он всегда остается влажным. Именно здесь и живут микроорганизмы. При прохождении через фильтрующий слой вещества в составе отработанного воздуха сорбируются на поверхности материала, таким образом становясь питательной базой для обитающих здесь бактерий.

Чтобы гарантировать высокую микробную активность в фильтре, должны соблюдаться оптимальные условия для жизни микроорганизмов: уровень pH, влажность, температура и регулярное поступление питательного вещества. Практика показывает, что развивающиеся в биофильтрах микробные смешанные популяции очень выносливы, если соблюдать вышеперечисленные условия.

Фильтрующий материал

К фильтрующему материалу также предъявляются определенные требования.

Он должен обладать большой специфической поверхностью и вместе с тем комфортной зоной размножения для микроорганизмов, которая:

  • хорошо сохраняет влажность,
  • допускает лишь незначительное падение давления при прохождении газа,
  • самостоятельно регулирует колебания величины pH,
  • обеспечивает равномерное прохождение через фильтрующий слой,
  • имеет незначительную скорость перегнивания.

Кроме того, микроорганизмы должны снабжаться неорганическими питательными веществами и микроэлементами. Следующие материалы могут использоваться в качестве фильтрующего слоя:

  • Компост из древесины или мусора
  • Вереск, хворост или волокна кокосовой пальмы
  • Продукты торфа
  • Бумажный гранулят

Дополнительно для разрыхления добавляют инертные материалы, такие как керамзит, стиропор или пенопласт. При этом фильтрующий слой является не только носителем для микроорганизмов, но и поставщиком питательных веществ.

Преимущества и недостатки биофилтрации

При эксплуатации биофильтра основная проблема заключается в предотвращении высыхания или чрезмерного увлажнения фильтрующего слоя, а, следовательно, обеспечения равномерного прохождения через него загрязненного воздуха.

Этого можно достигнуть, прежде всего, капсуляцией биофильтров. В качестве недостатков этих устройств можно отметить следующие:

  • большие размеры занимаемой площади
  • затраты на энергию для повышения давления
  • необходимость дополнительного орошения

Однако по сравнению с другими методиками, например, с ионизацией воздуха при помощи ионизирующих труб, постоянный биологический процесс чистки благодаря экономии CO2 и многочисленными экономическими аспектами (средние расходы на приобретение, большой срок эксплуатации, средние издержки производства) является более выгодным.

Технологические основы

Технологической основой является по существу биохимическое окисление и вместе с тем разложение и преобразование материалов бактериями, грибами и дрожжами в безвредные и не обладающие неприятными запахами субстанции.

Предпосылками является то, что вредные материалы водорастворимы, биологически разлагаемы и не токсичны для микроорганизмов.

Быстро растущая популяция микроорганизмов, обитающая на фильтрующем слое, использует содержащиеся в загрязненном воздухе летучие органические соединения для собственных обменных процессов. Распад происходит при аэробных условиях и достаточном количестве кислорода. Последнее обеспечивается его достаточным содержанием непосредственно в воздухе. Необходимо использовать насыщенный водяным паром отработанный воздух, так как материал фильтра должен быть влажным.

Области применения биофильтров

  • Биофильтры находят свое применение для биологической очистки воздуха в следующих сферах:
  • Станции по очистке сточных вод
  • Полигоны ТБО, заводы по переработки мусора
  • Предприятия по покраске поверхностей с использованием растворителей (металл, дерево, пластмассы)
  • Переработка продуктов питания, грибные фермы, коптильни
  • Маслобойные предприятия и компании солодоращения
  • Сельскохозяйственные установки
  • Биогазовые установки, переработка газа из органических отходов
  • Скотоводческие фермы
  • Заводы по производству комбикормов
  • Скотобойни
  • Установки для сушки шлама
  • Промышленные производственные комплексы

Биофильтрация для устранения неприятного запаха

Основная область применения устройств биологической фильтрации - это очистка воздуха от неприятного запаха. Микробиологический распад веществ, образующих неприятный запах, на углекислый газ и воду происходит при окружающей температуре, так что нет никакой необходимости задействовать дополнительную энергию и добавки. Следовательно, издержки производства при этом процессе очень незначительны. Во многих областях биофильтрация становится неотъемлемой частью технического оснащения производства.

В Европе применяются тысячи устройств биофильтрации для устранения неприятных запахов, исходящих из самых разных эмиссионных источников. Проблемы возникновения невыносимого запаха часто встречаются вблизи от очистных установок, свалок, литейных заводов, пивоварен, предприятий пищевой промышленности, мест содержания животных, заводов по переработки мусора, сельскохозяйственных предприятий и скотобоен. Биофильтрация представляет собой самый малозатратный и самый надежный метод для уничтожения неприятных запахов - степень ее эффективности достигает 99%.

Биофильтры для канализационных колодцев

Биофильтры для колодцев устанавливаются непосредственно под брызговиком в шахту колодца, тем самым предотвращая выход сильных запахов из канализации. Они содержат интегрированный брызговик и фильтрующий слой (смесь из торфа и композита для микроорганизмов). Поступающая с поверхности вода направляется в всасывающий раструб под коллектором шлама и отводится по сточной трубе. Резиновая прокладка предотвращает выход неочищенного воздуха. Современные фильтры больше не препятствуют воздушному просачиванию. Современные фильтры на бумажной основе не требуют дополнительного обслуживания и функционируют от 5 до 6 лет без постоянного контроля и ухода. Их эффективность составляет около 99%.

Применение

Предназначен для эффективного устранения неприятных запахов из коммунальной или промышленной канализации.

Действие

Микроорганизмы, находящиеся в биофильтре, нейтрализуют неприятные запахи перед выходом их наружу.

Конструкция

Конструкция из материала HDPE (High Density Poly-Ethylene) и нержавеющей стали обеспечивает прочность устройства (~ 7 лет)

Биофильтры контейнерного типа

Главной целью биофильтрации является осуществление контакта микроорганизмов с загрязнениями содержащимися в струе воздуха. Фильтрационный материал составляющий почву для выращивания микроорганизмов помещен внутри биофильтра. Во время процесса биофильтрации, струя загрязнёного воздуха проникает в биофильтр, где происходит процесс абсорбции через фильтрационный материал. В эффекте разложения возникают метаболические полупродукты в виде СО2 и Н2О.

Преимущества:

  • Нет никаких отходов требующих специальной обработки.
  • Загрязнения раскладываются на нейтральные соединения такие как: H2O, CO2 и биомассу.
  • Биомасса сохраняется внутри аппарата и через какой-то промежуток времени подвергается компостированию вместе с фильтрующим материалом.
  • Правильно запроектированные биофильтры практически не требуют никакого обслуживания.
  • Исключительно низкая себестоимость инвестиции, а также низкие эксплуатационные расходы по сравнению с традиционными способами очистки воздуха.

Требования к отработанному воздуху

Важнейшими предпосылками для функционирования биофильтров являются:

  • Соблюдение благоприятного температурного режима (+5°C - +55°C).
  • Орошение фильтрующего слоя для предотвращения его высыхания.
  • Предотвращение образования щелей и трещин в фильтрующем слое.
  • Очищаемые вещества должны быть водорастворимыми.
  • Очищаемые вещества должны быть биологически разложимыми.
  • Регулярное поступление питательных веществ в зону обитания микроорганизмов.

Ссылки

H.C. Flemming and J. Wingender (2010). Nature Reviews Microbiology.

Joseph S. Devinny, Marc A. Deshusses and Todd S. Webster (1999). Biofiltration for Air Pollution Control.

Hermann Bubinger, Hans-Gerd Schwinning (1992). Grundlagen und Anwendungsbeispiele der Biofiltertechnologie.

Andreas Oberhammer (1997). Verfahren zur gleichmäßigen Befeuchtung ener Filtermasse