Удельное сопротивление газов. Сопротивление меди в зависимости от температуры

Одной из физических величин, используемых в электротехнике, является удельное электрическое сопротивление. Рассматривая удельное сопротивление алюминия, следует помнить, что данная величина характеризует способность какого-либо вещества, препятствовать прохождению через него электрического тока.

Понятия, связанные с удельным сопротивлением

Величина, противоположная удельному сопротивлению, носит наименование удельной проводимости или электропроводности. Обычное электрическое сопротивление свойственно лишь проводнику, а удельное электрическое сопротивление характерно только для того или иного вещества.

Как правило, эта величина рассчитывается для проводника, имеющего однородную структуру. Для определения электрического однородных проводников используется формула:

Физический смысл этой величины заключается в определенном сопротивлении однородного проводника с определенной единичной длиной и площадью поперечного сечения. Единицей измерения служит единица системы СИ Ом.м или внесистемная единица Ом.мм2/м. Последняя единица означает, что проводник из однородного вещества, длиной 1 м, имеющий площадь поперечного сечения 1 мм2, будет иметь сопротивление в 1 Ом. Таким образом, удельное сопротивление любого вещества можно вычислить, используя участок электрической цепи, длиной 1 м, поперечное сечение которого будет составлять 1 мм2.

Удельное сопротивление разных металлов

Каждый металл имеет собственные индивидуальные характеристики. Если сравнивать удельное сопротивление алюминия, например с медью, можно отметить, что у меди это значение составляет 0,0175 Ом.мм2/м, а у алюминия - 0,0271Ом.мм2/м. Таким образом, удельное сопротивление алюминия значительно выше, чем у меди. Отсюда следует вывод, что электропроводность значительно выше, нежели из алюминия.

На значение удельного сопротивления металлов влияют определенные факторы. Например, при деформациях, нарушается структура кристаллической решетки. Из-за полученных дефектов возрастает сопротивление прохождению электронов внутри проводника. Поэтому, происходит рост удельного сопротивления металла.

Также свое влияние оказывает и температура. При нагревании узлы кристаллической решетки начинают колебаться сильнее, тем самым увеличивая удельное сопротивление. В настоящее время, из-за высокого удельного сопротивления, алюминиевые провода повсеместно заменяются медными, обладающими более высокой проводимостью.

Сопротивление меди действительно меняется с температурой, но сначала нужно определиться, имеется ли в виду удельное электрическое сопротивление проводников (омическое сопротивление), что важно для питания по Ethernet, использующего постоянный ток, или же речь идет о сигналах в сетях передачи данных, и тогда мы говорим о вносимых потерях при распространении электромагнитной волны в среде витой пары и о зависимости затухания от температуры (и частоты, что не менее важно).

Удельное сопротивление меди

В международной системе СИ удельное сопротивление проводников измеряется в Ом∙м. В сфере ИТ чаще используется внесистемная размерность Ом∙мм 2 /м, более удобная для расчетов, поскольку сечения проводников обычно указаны в мм 2 . Величина 1 Ом∙мм 2 /м в миллион раз меньше 1 Ом∙м и характеризует удельное сопротивление вещества, однородный проводник из которого длиной 1 м и с площадью поперечного сечения 1 мм 2 дает сопротивление в 1 Ом.

Удельное сопротивление чистой электротехнической меди при 20°С составляет 0,0172 Ом∙мм 2 /м . В различных источниках можно встретить значения до 0,018 Ом∙мм 2 /м, что тоже может относиться к электротехнической меди. Значения варьируются в зависимости от обработки, которой подвергнут материал. Например, отжиг после вытягивания («волочения») проволоки уменьшает удельное сопротивление меди на несколько процентов, хотя проводится он в первую очередь ради изменения механических, а не электрических свойств.

Удельное сопротивление меди имеет непосредственное значение для реализации приложений питания по Ethernet. Лишь часть исходного постоянного тока, поданного в проводник, достигнет дальнего конца проводника – определенные потери по пути неизбежны. Так, например, PoE Type 1 требует, чтобы из 15,4 Вт, поданных источником, до запитываемого устройства на дальнем конце дошло не менее 12,95 Вт.

Удельное сопротивление меди изменяется с температурой, но для температур, характерных для сферы ИТ, эти изменения невелики. Изменение удельного сопротивления рассчитывается по формулам:

ΔR = α · R · ΔT

R 2 = R 1 · (1 + α · (T 2 - T 1))

где ΔR – изменение удельного сопротивления, R – удельное сопротивление при температуре, принятой в качестве базового уровня (обычно 20°С), ΔT – градиент температур, α – температурный коэффициент удельного сопротивления для данного материала (размерность °С -1). В диапазоне от 0°С до 100°С для меди принят температурный коэффициент 0,004 °С -1 . Рассчитаем удельное сопротивление меди при 60°С.

R 60°С = R 20°С · (1 + α · (60°С - 20°С)) = 0,0172 · (1 + 0,004 · 40) ≈ 0,02 Ом∙мм 2 /м

Удельное сопротивление при увеличении температуры на 40°С возросло на 16%. При эксплуатации кабельных систем, разумеется, витая пара не должна находиться при высоких температурах, этого не следует допускать. При правильно спроектированной и установленной системе температура кабелей мало отличается от обычных 20°С, и тогда изменение удельного сопротивления будет невелико. По требованиям телекоммуникационных стандартов сопротивление медного проводника длиной 100 м в витой паре категорий 5e или 6 не должно превышать 9,38 Ом при 20°С. На практике производители с запасом вписываются в это значение, поэтому даже при температурах 25°С ÷ 30°С сопротивление медного проводника не превышает этого значения.

Затухание сигнала в витой паре / Вносимые потери

При распространении электромагнитной волны в среде медной витой пары часть ее энергии рассеивается по пути от ближнего конца к дальнему. Чем выше температура кабеля, тем сильнее затухает сигнал. На высоких частотах затухание сильнее, чем на низких, и для более высоких категорий допустимые пределы при тестировании вносимых потерь строже. При этом все предельные значения заданы для температуры 20°С. Если при 20°С исходный сигнал приходил на дальний конец сегмента длиной 100 м с уровнем мощности P, то при повышенных температурах такая мощность сигнала будет наблюдаться на более коротких расстояниях. Если необходимо обеспечить на выходе из сегмента ту же мощность сигнала, то либо придется устанавливать более короткий кабель (что не всегда возможно), либо выбирать марки кабелей с более низким затуханием.

  • Для экранированных кабелей при температурах выше 20°С изменение температуры на 1 градус приводит к изменению затухания на 0.2%
  • Для всех типов кабелей и любых частот при температурах до 40°С изменение температуры на 1 градус приводит к изменению затухания на 0.4%
  • Для всех типов кабелей и любых частот при температурах от 40°С до 60°С изменение температуры на 1 градус приводит к изменению затухания на 0.6%
  • Для кабелей категории 3 может наблюдаться изменение затухания на уровне 1,5% на каждый градус Цельсия

Уже в начале 2000 гг. стандарт TIA/EIA-568-B.2 рекомендовал уменьшать максимально допустимую длину постоянной линии/канала категории 6, если кабель устанавливался в условиях повышенных температур, и чем выше температура, тем короче должен быть сегмент.

Если учесть, что потолок частот в категории 6А вдвое выше, чем в категории 6, температурные ограничения для таких систем будут еще жестче.

На сегодняшний день при реализации приложений PoE речь идет о максимум 1-гигабитных скоростях. Когда же используются 10-гигабитные приложения, питание по Ethernet не применяется, по крайней мере, пока. Так что в зависимости от ваших потребностей при изменении температуры вам нужно учитывать либо изменение удельного сопротивления меди, либо изменение затухания. Разумнее всего и в том, и в другом случае обеспечить кабелям нахождение при температурах, близких к 20°С.

Электрическое сопротивление - физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

Вещество

p , Ом*мм 2 /2

α,10 -3 1/K

Алюминий

0.0271

Вольфрам

0.055

Железо

0.098

Золото

0.023

Латунь

0.025-0.06

Манганин

0.42-0.48

0,002-0,05

Медь

0.0175

Никель

Константан

0.44-0.52

0.02

Нихром

0.15

Серебро

0.016

Цинк

0.059

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций

При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 - температура после нагрева.

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

Электрическое сопротивление, выражаемое в омах, отличается от понятия «удельное сопротивление». Чтобы понять, что такое удельное сопротивление, надо связать его с физическими свойствами материала.

Об удельной проводимости и удельном сопротивлении

Поток электронов не перемещается беспрепятственно через материал. При постоянной температуре элементарные частицы качаются вокруг состояния покоя. Кроме того, электроны в зоне проводимости мешают друг другу взаимным отталкиванием из-за аналогичного заряда. Таким образом возникает сопротивление.

Удельная проводимость является собственной характеристикой материалов и количественно определяет легкость, с которой заряды могут двигаться, когда вещество подвергается воздействию электрического поля. Удельное сопротивление является обратной величиной и характеризуется степенью трудности, которую электроны встречают при своих перемещениях внутри материала, давая представление о том, насколько хорош или плох проводник.

Важно! Удельное электрическое сопротивление с высоким значением указывает на то, что материал плохо проводящий, а с низким значением – определяет хорошее проводящее вещество.

Удельная проводимость обозначается буквой σ и рассчитывается по формуле:

Удельное сопротивление ρ, как обратный показатель, можно найти так:

В этом выражении E является напряженностью создаваемого электрического поля (В/м), а J – плотностью электротока (А/м²). Тогда единица измерения ρ будет:

В/м х м²/А = ом м.

Для удельной проводимости σ единицей, в которой она измеряется, служит См/м или сименс на метр.

Типы материалов

В соответствии с удельным сопротивлением материалов, их можно классифицировать на несколько типов:

  1. Проводники. К ним относятся все металлы, сплавы, растворы, диссоциированные на ионы, а также термически возбужденные газы, включая плазму. Из неметаллов можно привести в пример графит;
  2. Полупроводники, фактически представляющие собой непроводящие материалы, кристаллические решетки которых целенаправленно легированы включением чужеродных атомов с большим или меньшим числом связанных электронов. В результате в структуре решетки образуются квазисвободные избыточные электроны или дырки, которые вносят вклад в проводимость тока;
  3. Диэлектрики или изоляторы диссоциированные – все материалы, которые в нормальных условиях не имеют свободных электронов.

Для транспортировки электрической энергии или в электроустановках бытового и промышленного назначения часто используемый материал – медь в виде одножильных или многожильных кабелей. Альтернативно применяется металл алюминий, хотя удельное сопротивление меди составляет 60% от такого же показателя для алюминия. Но он гораздо легче меди, что предопределило его использование в линиях электропередач сетей высокого напряжения. Золото в качестве проводника применяется в электроцепях специального назначения.

Интересно. Электропроводность чистой меди была принята Международной электротехнической комиссией в 1913 году в качестве стандарта по этой величине. Согласно определению, проводимость меди, измеренная при 20°, равна 0,58108 См/м. Это значение называется 100% LACS, а проводимость остальных материалов выражается как определенный процент LACS.

Большинство металлов имеют значение проводимости меньше 100% LACS. Однако есть исключения, такие как серебро или специальная медь с очень высокой проводимостью, обозначенные С-103 и С-110, соответственно.

Диэлектрики не проводят электричество и используются в качестве изоляторов. Примеры изоляторов:

  • стекло,
  • керамика,
  • пластмасса,
  • резина,
  • слюда,
  • воск,
  • бумага,
  • сухая древесина,
  • фарфор,
  • некоторые жиры для промышленного и электротехнического использования и бакелит.

Между тремя группами переходы являются текучими. Известно точно: абсолютно непроводящих сред и материалов нет. Например, воздух – изолятор при комнатной температуре, но в условиях мощного сигнала низкой частоты он может стать проводником.

Определение удельной проводимости

Если сравнивать удельное электрическое сопротивление различных веществ, требуются стандартизированные условия измерения:

  1. В случае жидкостей, плохих проводников и изоляторов, используют кубические образцы с длиной ребра 10 мм;
  2. Величины удельного сопротивления почв и геологических образований определяются на кубах с длиной каждого ребра 1 м;
  3. Проводимость раствора зависит от концентрации его ионов. Концентрированный раствор менее диссоциирован и имеет меньше носителей заряда, что снижает проводимость. По мере увеличения разведения увеличивается число ионных пар. Концентрация растворов устанавливается в 10%;
  4. Для определения удельного сопротивления металлических проводников используются провода метровой длины и сечения 1 мм².

Если материал, такой как металл, может обеспечить свободные электроны, то когда приложить разность потенциалов, по проводу потечет электрический ток. По мере увеличения напряжения большее количество электронов перемещается через вещество во временную единицу. Если все дополнительные параметры (температура, площадь поперечного сечения, длина и материал провода) неизменны, то отношение силы тока к приложенному напряжению тоже постоянно и именуется проводимостью:

Соответственно, электросопротивление будет:

Результат получается в ом.

В свою очередь, проводник может быть разных длины, размеров сечения и изготавливаться из различных материалов, от чего зависит значение R. Математически эта зависимость выглядит так:

Фактор материала учитывает коэффициент ρ.

Отсюда можно вывести формулу для удельного сопротивления:

Если значения S и l соответствуют заданным условиям сравнительного расчета удельного сопротивления, т. е. 1 мм² и 1 м, то ρ = R. При изменении габаритов проводника количество омов тоже меняется.

Для каждого проводника существует понятие удельного сопротивления. Эта величина состоит из Омов, умножаемых на квадратный миллиметр, далее, делимое на один метр. Иными словами, это сопротивление проводника, длина которого составляет 1 метр, а сечение - 1 мм 2 . То же самое представляет собой и удельное сопротивление меди - уникального металла, получившего широкое распространение в электротехнике и энергетике.

Свойства меди

Благодаря своим свойствам этот металл одним из первых начал применяться в области электричества. Прежде всего, медь является ковким и пластичным материалом с отличными свойствами электропроводимости. До сих пор в энергетике нет равноценной замены этому проводнику.

Особенно ценятся свойства специальной электролитической меди, обладающей высокой чистотой. Этот материал позволил выпускать провода с минимальной толщиной в 10 микрон.

Кроме высокой электропроводности, медь очень хорошо поддается лужению и другим видам обработки.

Медь и ее удельное сопротивление

Любой проводник оказывает сопротивление, если через него пропустить электрический ток. Значение зависит от длины проводника и его сечения, а также от действия определенных температур. Поэтому, удельное сопротивление проводников зависит не только от самого материала, но и от его определенной длины и площади поперечного сечения. Чем легче материал пропускает через себя заряд, тем ниже его сопротивление. Для меди, показатель удельного сопротивления составляет 0,0171 Ом х 1 мм 2 /1 м и лишь немного уступает серебру. Однако, использование серебра в промышленных масштабах экономически невыгодно, поэтому, медь является лучшим проводником, используемым в энергетике.

Удельное сопротивление меди связано и с ее высокой проводимостью. Эти величины прямо противоположны между собой. Свойства меди, как проводника, зависят и от температурного коэффициента сопротивления. Особенно, это касается сопротивление, на которое оказывает влияние температура проводника.

Таким образом, благодаря своим свойствам, медь получила широкое распространение не только в качестве проводника . Этот металл используется в большинстве приборов, устройств и агрегатов, функционирование которых связано с электрическим током.