1 и 2 группы предельных состояний. Готовимся к проверкам по предельным состояниям. Концепция предельного состояния

Предельными считаются состояния, при которых кон­струкции перестают удовлетворять предъявляемым к ним в процессе эксплуатации требованиям, т. е. теряют способность сопротивляться внешним нагрузкам и воз­действиям или получают недопустимые перемещения или местные повреждения.

Железобетонные конструкции должны удовлетворять требованиям расчета по двум группам предельных со­стояний: по несущей способности - первая группа пре­дельных состояний; по пригодности к нормальной эксплу­атации - вторая группа предельных состояний.

Расчет по предельным состояниям первой группы выполняют, чтобы предотвратить:

Хрупкое, вязкое или иного характера разрушение (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением);

Потерю устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т. п.) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т. п.);

Усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократ­но повторяющейся нагрузки подвижной или пульсиру­ющей: подкрановых балок, шпал, рамных фундаментов и перекрытий под неуравновешенные машины и т. п.);

Разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (пе­риодического или постоянного воздействия агрессивной среды, действия попеременного замораживания и отта­ивания и т. п.).

Расчет по предельным состояниям второй группы вы­полняют, чтобы предотвратить:

Образование чрезмерного или продолжительного рае- крытия трещин (если по условиям эксплуатации обра­зование или продолжительное раскрытие трещин допу­стимо);

Чрезмерные перемещения (прогибы, углы поворота, углы перекоса и амплитуды колебаний).

Расчет по предельным состояниям конструкции в це­лом, а также отдельных ее элементов или частей произ­водится для всех этапов: изготовления, транспортирова­ния, монтажа и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям и каждому из перечисленных этапов.

Расчетные факторы

Расчетные факторы - нагрузки и механические ха­рактеристики бетона и арматуры (временное сопротив­ление, предел текучести)-обладают статистической изменчивостью (разбросом значений). Нагрузки и воздей­ствия могут отличаться от заданной вероятности превыше­ния средних значений, а механические характеристики материалов могут отличаться от заданной вероят­ности снижения средних значений. В расчетах по пре­дельным состояниям учитывают статистическую измен­чивость нагрузок и механических характеристик матери­алов, факторы нестатистического характера и различные неблагоприятные или благоприятные физические, хими­ческие и механические условия работы бетона и армату­ры, изготовления и эксплуатации элементов зданий и со­оружений. Нагрузки, механические характеристики ма­териалов и расчетные коэффициенты нормируют.

Значения нагрузок, сопротивления бетона и армату­ры устанавливают по главам СНиП «Нагрузки и воздей­ствия» и «Бетонные и железобетонные конструкции».

Классификация нагрузок. Нормативные и расчетные нагрузки

В зависимости от продолжительности действия на­грузки делят на постоянные и временные. Временные на­грузки, в свою очередь, подразделяют на длительные, кратковременные, особые.

Постоянными являются нагрузки от веса несущих и ограждающих конструкций зданий и сооружений, массы и давления грунтов, воздействия предварительного на­пряжения железобетонных конструкций.

Длительными являются нагрузки от веса стационар­ного оборудования на перекрытиях - , аппара­тов, двигателей, емкостей и т. п.; давление газов, жид­костей, сыпучих тел в емкостях; нагрузки в складских помещениях, холодильниках, архивах библиотеках и по­добных зданиях и сооружениях; установленная норма­ми часть временной нагрузки в жилых домах, служеб­ных и бытовых помещениях; длительные температурные технологические воздействия от стационарного оборудо­вания; нагрузки от одного подвесного или одного мосто­вого крана, умноженные на коэффициенты: 0,5 для кра­нов среднего режима работы и на 0,7 для кранов тяжелого режима работы; снеговые нагрузки для III-IV климатических районов с коэффициентами 0,3- 0,6. Указанные значения крановых, некоторых времен­ных и снеговых нагрузок составляют часть полного их значения и вводятся в расчет при учете длительности действия нагрузок этих видов на перемещения, деформа­ции, образование трещин. Полные значения этих нагру­зок относятся к кратковременным.

Кратковременными являются нагрузки от веса лю­дей, деталей, материалов в зонах обслуживания и ре­монта оборудования - проходах и других свободных от оборудования участках; часть нагрузки на перекрытиях жилых и общественных зданий; нагрузки, возникающие при изготовлении, перевозке и монтаже элементов кон­струкций; нагрузки от подвесных и мостовых кранов, используемых при возведении или эксплуатации зданий и сооружений; снеговые и ветровые нагрузки; темпера­турные климатические воздействия.

К особым нагрузкам относятся: сейсмические и взрыв­ные воздействия; нагрузки, вызываемые неисправностью или поломкой оборудования и резким нарушением тех­нологического процесса (например, при резком повыше­нии или понижении температуры и т. п.); воздействия неравномерных деформаций основания, сопровождаю­щиеся коренным изменением структуры грунта (напри­мер, деформации просадочных грунтов при замачивании или вечномерзлых грунтов при оттаивании), и др.

Нормативные нагрузки устанавливаются нормами по заранее заданной вероятности превышения средних зна­чений или по номинальным значениям. Нормативные по­стоянные нагрузки принимаются по проектным значе­ниям геометрических и конструктивных параметров и по

Средним значениям плотности. Нормативные временные; технологические и монтажные нагрузки устанавливают­ся по» наибольшим значениям, предусмотренным для нормальной эксплуатации; снеговые и ветровые - по средним из ежегодных неблагоприятных значений или по неблагоприятным значениям, соответствующим опреде­ленному среднему периоду их повторений.

Расчетные нагрузки для расчета конструкций на проч­ность и устойчивость определяют умножением норма­тивной нагрузки на коэффициент надежности по нагруз­ке Yf, обычно больший единицы, например G = Gnyt . Ко­эффициент надежности от веса бетонных и железобетон­ных конструкций Yf = M; от веса конструкций из бето­нов на легких заполнителях (со средней плотностью 1800 кг/м3 и менее) и различных стяжек, засыпок, утеп­лителей, выполняемых в заводских условиях, Yf = l,2,на монтаже Yf = l>3; от различных временных нагрузок в зависимости от их значення Yf = l. 2...1,4. Коэффициент перегрузки от веса конструкций при расчете на устойчи­вость положения против всплытия, опрокидывания н скольжения, а также в других случаях, когда уменьше­ние массы ухудшает условия работы конструкции, принят yf = 0,9. При расчете конструкций на стадии возведе­ния расчетные кратковременные яагрузки умножают на коэффициент 0,8. Расчетные нагрузки для расчета кон­струкций по деформациям и перемещениям (по второй группе предельных состояний) принимают равными нор­мативным значениям с коэффициентом Yf = l-

Сочетание нагрузок. Конструкции должны быть рас­считаны на различные сочетания нагрузок или соответ­ствующие им усилия, если расчет ведется по неупругой схеме. В зависимости от состава учитываемых нагрузок различают: основные сочетания, состоящие из постоян­ных, длительных и кратковременных нагрузок илн уси­лий от ннх; особые сочетания, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок или усилий от них.

Рассматриваются две группы основных сочетаний на­грузок. При расчете конструкций на основные сочетания первой группы учитываются нагрузки постоянные, дли­тельные и одна кратковременная; прн расчете конструк­ций на основные сочетания второй группы учитываются нагрузки постоянные, длительные и две (или более) кратковременные; при этом значення кратковременных нагрузок или соответствующих им усилий должны умно­жаться на коэффициент сочетаний, равный 0,9.

При расчете конструкций на особые сочетания значе­ния кратковременных нагрузок или соответствующих им усилий должны умножаться на коэффициент сочетаний, равный 0,8, кроме случаев, оговоренных в нормах про­ектирования зданий и сооружений в сейсмических рай­онах.

Снижение нагрузок. При расчете колонн, стен, фун­даментов многоэтажных зданий временные нагрузки на перекрытия допускается снижать, учитывая степень ве­роятности их одновременного действия, умножением на коэффициент

T) = a + 0,6/Km~, (II-11)

Где а - принимается равным 0,3 для жилых домов, служебных зданий, общежитий и т. п. и равным 0,5 для различных залов: читальных, собраний, торговых и т. п.; т - число загруженных перекрытий над рассматриваемым сечением.

Нормами также допускается снижать временные на­грузки при расчете балок и ригелей в зависимости от площади загружаемого перекрытия.

Предельные состояния - это такие состояния, при которых конструкция не может больше использоваться в результате дей­ствия внешних нагрузок и внутренних напряжений. В конструк­циях из дерева и пластмасс могут возникать две группы предель­ных состояний - первая и вторая.

Расчет по предельным состояниям конструкций в целом и ее элементов должен производиться для всех стадий: транспортировки, монтажа и эксплуатации - и должен учитывать все возможные сочетания нагрузок. Целью расчета является не допустить ни первого, ни второго предельного состояний в процессах перевозки, сборки и эксплуа­тации конструкции. Это выполняется на основании учета норма­тивных и расчетных нагрузок и сопротивлений материалов.

Метод предельного состояния является первым шагом в обеспечении надежности строительных конструкций. Надежностью называют способность объекта сохранять в процессе эксплуатации качество, заложенное при проектировании. Специфика теории надежности строительных конструкций состоит в необходимости учитывать случайные значения нагрузок на системы со случайными прочностными показателями. Характерной особенностью метода предельных состояний является то, что все исходные величины, оперируемые при расчете, случайные по своей природе представлены в нормах детерминированными, научно-обоснованными, нормативными значениями, а влияние их изменчивости на надежность конструкций учитывается соответствующими коэффициентами. Каждый из коэффициентов надежности учитывает изменчивость только одной исходной величины, т.е. носит частный характер. Поэтому метод предельных состояний иногда называют методом частных коэффициентов. Факторы, изменчивость которых влияет на уровень надежности конструкций, могут быть отнесены к пяти основным категориям: нагрузки и воздействия; геометрические размеры элементов конструкций; степень ответственности сооружений; механические свойства материалов; условия работы конструкции. Рассмотрим перечисленные факторы. Возможное отклонение нормативных нагрузок в большую или меньшую сторону учитывается коэффициентом надежности по нагрузке 2, который в зависимости от вида нагрузки имеет различную величину больше или меньше единицы. Эти коэффициенты наряду с нормативными величинами представлены в главе СНиП 2.01.07-85 Нормы проектирования. "Нагрузки и воздействия". Вероятность совместного действия нескольких нагрузок учитывают умножением нагрузок на коэффициент сочетания, который представлен в той же главе норм. Возможное неблагоприятное отклонение геометрических размеров элементов конструкций учитывается коэффициентом точности. Однако этот коэффициент в чистом виде не принимается. Этот фактор используется при вычислении геометрических характеристик, принимая расчетные параметры сечений с минусовым допуском. С целью разумного сбалансирования затрат на здания и соружения различного назначения вводится коэффициент надежности по назначению < 1. Степень капитальности и ответственности зданий и сооружений разбивается на три класса ответственности. Этот коэффициент (равный 0,9; 0,95; 1) вводится в качестве делителя к значению расчетного сопротивления или в качестве множителя к значению расчетных нагрузок и воздействий.

Основным параметром сопротивления материала силовым воздействиям является нормативное сопротивление, устанавливаемое нормативными документами по результатам статистических исследований изменчивости механических свойств материалов путем испытаний образцов материала по стандартным методикам. Возможное отклонение от нормативных значений учитывается коэффициентом надежности по материалу ут > 1. Он отражает статистическую изменчивость свойств материалов и их отличие от свойств испытанных стандартных образцов. Характеристика, получаемая делением нормативного сопротивления на коэффициент т, называется расчетным сопротивлением Я. Эта основная характеристика прочности древесины нормируется СНиП П-25-80 "Нормы проектирования. Деревянные конструкции".

Неблагоприятное влияние окружающей и эксплуатационной среды как то: ветровая и монтажная нагрузки, высота сечения, температурно-влажностные условия - учитываются путем введения коэффициентов условий работы т. Коэффициент т может быть меньше единицы, если данный фактор или совокупность факторов снижают несущую способность конструкции, и больше единицы - в противоположном случае. Для древесины эти коэффициенты представлены в СНиП 11-25-80 "Нормы проектирования.

Нормативные предельные значения прогибов отвечают следующим предъявляемым требованиям:а) технологические (обеспечение условий нормальной эксплуатации техники и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д); б) конструктивные (обеспечение целостности примыкающих друг к другу элементов конструкций, их стыков, наличие зазора между несущими конструкциями и конструк-циями перегородок, фахверка и т.д., обеспечение заданных уклонов); в) эстетико-психологические (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Величина предельных прогибов зависит от пролета и вида прикладываемых нагрузок. Для деревянных конструкций покрытия зданий от действия постоянных и временных длительных нагрузок предельный прогиб колеблется от (1/150)- i до (1/300) (2). Прочность древесины снижается также под действием некоторых химических препаратов от биопоражения, внедренных под давлением в автоклавах на значительную глубину. В этом случае коэффициент условия работы тиа = 0,9. Влияние концентрации напряжений в расчетных сечениях растянутых элементов, ослабленных отверстиями, а также в изгибаемых элементах из круглых лесоматериалов с подрезкой в расчетном сечении отражает коэффициент условия работы т0 = 0,8. Деформативность древесины при расчете деревянных конструкций по второй группе предельных состояний учитывается базовым модулем упругости Е, который при направлении усилия вдоль волокон древесины принят 10000 МПа, а поперек волокон 400 МПа. При расчете на устойчивость модуль упругости принят 4500 МПа. Базовый модуль сдвига древесины (6) в обоих направлениях равен 500 МПа. Коэффициент Пуассона древесины поперек волокон при напряжениях, направ-ленных вдоль волокон, принимается равным пдо о = 0,5, а вдоль волокон при напряже-ниях, направленных поперек волокон, п900 = 0,02. Поскольку длительность и уровень нагружения влияет не только на прочность, но и на деформационные свойства древесины, величина модуля упругости и модуля сдвига умножается на коэффициент тй = 0,8 при расчете конструкций, в которых напряжения в элементах, возникающие от постоянных и временных длительных нагрузок, превышают 80% суммарного напряжения от всех нагрузок. При расчете металлодеревянных конструкций упругие характеристики и расчетные сопротивления стали и соединений стальных элементов, а также арматуры принимаются по главам СНиП по проектированию стальных и железобетонных конструкций.

Из всех листовых конструкционных материалов с использованием древесного сырья только фанеру рекомендуется использовать в качестве элементов несущих конструкций, базовые расчетные сопротивления которых приведены в табл.10 СНиП П-25-80. При соответствующих условиях работы клеефанерных конструкций расчетом по первой группе предельных состояний предусматривается умножение базовых расчетных сопротивлений фанеры на коэффициенты условий работы тв, тй, тн и тл. При расчете по второй группе предельных состояний упругие характеристики фанеры в плоскости листа принимаются по табл. 11 СниП П-25-80. Модуль упругости и модуль сдвига для конструкций, находящихся в различных условиях эксплуатации, а также подвергающихся совместному воздействию постоянной и временной длительных нагрузок, следует умножить на соответствующие коэффициенты условий работы, принятых для древесины

Первая группа наиболее опасна. Она определяется непригод­ностью к эксплуатации, когда конструкция теряет несущую спо­собность в результате разрушения или потери устойчивости. Это­го не происходит, пока максимальные нормальные о или скалы­вающие т напряжения в ее элементах не превосходят расчетных (минимальных) сопротивлений материалов, из которых они изго­товлены. Это условие записывается формулой

а,т

К предельным состояниям первой группы относится: разрушение любого вида, общая потеря устойчивости конструкции или местная потеря устойчивости элемента конструкции, нарушение узлов соединений, превращающих конструкцию в изменяемую систему, развитие недопустимых по величине остаточных деформаций. Расчет по несущей способности ведется по вероятному худшему случаю, а именно: по наибольшей нагрузке и наименьшему сопротивлению материала, найденному с учетом всех влияющих на него факторов. Неблагоприятные сочетания приводятся в нормах.

Вторая группа менее опасна. Она определяется непригод­ностью конструкции к нормальной эксплуатации, когда она про­гибается до недопустимой величины. Этого не происходит, пока максимальный относительный прогиб ее /// не превосходит пре­дельно допускаемых значений. Это условие записывается фор­мулой

Г/1 <. (2.2)

Расчет деревянных конструкций по второму предельному состоянию по деформациям распространяется в основном на изгибаемые конструкции и имеет целью ограничить величину деформаций. Расчет ведут на нормативные нагрузки без умножения их на коэффициенты надежности в предположении упругой работы древесины. Расчет по деформациям ведется по средним характеристикам древесины, а не по сниженным, как при проверке несущей способности. Это объясняется тем, что увеличение прогиба в отдельных случаях, при употреблении в дело древесины пониженного качества, не представляет опасности для целостности конструкций. Этим же объясняется и то, что расчет по деформациям проводится на нормативные, а не на расчетные нагрузки. В качестве иллюстрации предельного состояния второй группы можно привести пример, когда в результате недопустимого прогиба стропил появляются трещины в кровельном покрытии. Протекание влаги в этом случае нарушает нормальную эксплуатацию здания, приводит к снижению долговечности древесины из-за ее увлажнения, но при этом здание продолжает эксплуатироваться. Расчет по второму предельному состоянию, как правило, имеет подчиненное значение, т.к. главным считается обеспечение несущей способности. Однако и ограничения прогибов имеют особенно важное значение для конструкций с податливыми связями. Поэтому деформации деревянных конструкций (составные стойки, составные балки, дощато-гвоздевые конструкции) необходимо определять с учетом влияния податливости связей (СНиП П-25-80. Табл.13).

Нагрузки, действующие на конструкции, определяются Строи­тельными нормами и правилами - СНиП 2.01.07-85 «Нагрузки и воздействия». При расчете конструкций из дерева и пластмасс учитываются, главным образом, постоянная нагрузка от собст­венного веса конструкций и других элементов зданий g и кратко­временные нагрузки от веса снега S, давления ветра W. Учитываются также нагрузки от веса людей и оборудования. Каждая нагрузка имеет нормативное и расчетное значение. Нор­мативное значение удобно обозначать индексом н.

Нормативные нагрузки являются исходными зна­чениями нагрузок: Временные нагрузки определяются в резуль­тате обработки данных многолетних наблюдений и измерений. Постоянные нагрузки вычисляются по значениям собственного веса и объема конструкций, прочих элементов здания и обору­дования. Нормативные нагрузки учитываются при расчете кон­струкций по второй группе предельных состояний - по прогибам.

Расчетные нагрузки определяются на основании нормативных с учетом их возможной переменчивости, особенно в большую сторону. Для этого значения нормативных нагрузок умножают на коэффициент надежности по нагрузке у, значения которого различны для разных нагрузок, но все они больше единицы. Значения распределенных нагрузок даются в нормах в килопаскалях (кПа), что соответствует килоньютонам на квадратный метр (кН/м). В большинстве расчетов применяются линейные значения нагрузок (кН/м). Расчетные нагрузки применяются при расчете конструкций по первой группе предельных состоя­ний, по прочности и устойчивости.

g", действующая на кон­струкцию, состоит из двух частей: первая часть - нагрузка от всех элементов ограждающих конструкций и материалов, под держиваемых данной конструкцией. Нагрузка от каждого эле­мента определяется путем умножения его объема на плотность материала и на шаг расстановки конструкций; вторая часть - нагрузка от собственного веса основной несущей конструкции. При предварительном расчете нагрузку от собственного веса основной несущей конструкции можно определить приближенно, задаваясь реальными размерами сечений и объемами элементов конструкции.

равна произведению нор­мативной на коэффициент надежности по нагрузке у. Для наг­рузки от собственного веса конструкций у= 1,1, а для нагрузок от утепления, кровли, пароизоляции и других у = 1,3. Постоян­ную нагрузку от обычных скатных покрытий с углом наклона а удобно относить к их горизонтальной проекции путем деления ее на cos а.

Нормативная снеговая нагрузка s H определяется исходя из нормативного веса снегового покрова so, который дается в нор­мах нагрузок (кН/м 2) горизонтальной проекции покрытия в за­висимости от снегового района страны. Эту величину умножают на коэффициент р, учитывающий уклон и другие особенности формы покрытия. Тогда нормативная нагрузка s H = s 0 p- При двускатных покрытиях, имеющих а ^ 25°, р=1, при а > 60° р = 0, а при промежуточных углах наклона 60° >* <х > 25° р == (60° - а°)/35°. Эта. нагрузка является равномерной и мо­жет быть дву- или односторонней.

При сводчатых покрытиях по сегментным фермам или аркам равномерная снеговая нагрузка определяется с учетом коэффи­циента р, который зависит от отношения длины пролета / к вы­соте свода /: р = //(8/).

При отношении высоты свода к пролету f/l= 1/8 снеговая нагрузка может быть треугольной с максимальным значением на одной опоре s" и 0,5 s" на другой и нулевым значением в коньке. Коэффициенты р, определяющие величины максимальной снеговой нагрузки при отношениях f/l = 1/8, 1/6 и 1/5, соответ­ственно равны 1,8; 2,0 и 2,2. Снеговая нагрузка на покрытия стрельчатой формы может определяться как на двускатные, считая условно покрытие дву­скатным по плоскостям, проходящим через хорды осей пол у арок. Расчетная снеговая нагрузка равна произведению норматив­ной нагрузки на коэффициент надежности по нагрузке 7- Для большинства легких деревянных и пластмассовых конструкций при отношении нормативных постоянной и снеговой нагрузок g n /s H < 0,8 коэффициент у = 1,6. При больших отношениях этих нагрузок у =1,4.

Нагрузка от веса человека с грузом принимается равной - нормативная р" = 0,1 кН и расчетная R = р и у = 0,1 1,2 = 1,2 кН. Ветровая нагрузка. Нормативная ветровая нагрузка w состоит из давления ш"+ и отсоса w n - ветра. Исходными дан­ными при определении ветровой нагрузки являются значения давления ветра, направленного перпендикулярно поверхностям покрытияи стен зданий Wi (МПа), зависящие от ветрового райо­на страны ипринимаемые по нормам нагрузок и воздействий. Нормативные ветровые нагрузки w" определяются умножением нормального давления ветра на коэффициент k, учитывающий высоту зданий, и аэродинамический коэффициент с, учитываю­щий его форму. Для большинства зданий из дерева и пласт­масс, высота которых не превышает 10 м, к = 1.

Аэродинамический коэффициент с зависит от формы здания, его абсолютных и относительных размеров, уклонов, относитель­ных высот покрытий и направления ветра. На большинство скат­ных покрытий, угол наклона которых не превышает а= 14°, ветровая нагрузка действует в виде отсоса W-. При этом она в основном не увеличивает, а уменьшает усилия в конструкциях от постоянных и снеговых нагрузок и при расчете может не учитываться в запас прочности. Ветровая нагрузка должна обя­зательно учитываться при расчете стоек и стен зданий, а также при расчете конструкций треугольной и стрельчатой формы.

Расчетная ветровая нагрузка равна нормативной, умножен­ной на коэффициент надежности у= 1,4. Таким образом, w = = w"y.

Нормативные сопротивления древесины R H (МПа) являются основными характеристиками прочности древесины чистых от пороков участков. Они определяются по результатам многочис­ленных лабораторных кратковременных испытаний малых стан­дартных образцов сухой древесины влажностью 12 % на растяжение, сжатие, изгиб, смятие и скалывание.

95 % испытанных образцов древесины будут при сжатии иметь прочность, равную или большую, чем ее нор­мативное значение.

Значения нормативных сопротивлений, приведенные в прилож. 5, практически используются при лабораторном контроле прочности древесины в процессе изготовления деревянных конструкций и при определении несущей способности эксплуатируемых несущих конструкций при их обследованиях.

Расчетные сопротивления древесины R (МПа) - это основ­ные характеристики прочности реальной древесины элементов реальных конструкций. Эта древесина имеет естественные допус­каемые пороки и работает под нагрузками в течение многих лет. Расчетные сопротивления получаются на основании норма­тивных сопротивлений с учетом коэффициента надежности по материалу у и коэффициента длительности нагружения т ал по формуле

R= R H m a Jy.

Коэффициент у значительно больше единицы. Он учитывает снижение прочности реальной древесины в результате неодно­родности строения и наличия различных пороков, которых не бывает в лабораторных образцах. В основном прочность дре­весины снижают сучки. Они уменьшают рабочую площадь се­чения, перерезая и раздвигая ее продольные волокна, создают эксцентриситет продольных сил и наклон волокон вокруг сучка. Наклон волокон вызывает растяжение древесины поперек и под углом к волокнам, прочность которой в этих направлениях зна­чительно ниже, чем вдоль волокон. Пороки древесины почти в два раза снижают прочность древесины при растяжении и при­мерно в полтора раза при сжатии. Трещины наиболее опасны в зонах работы древесины на скалывание. С увеличением разме­ров сечений элементов напряжения при их разрушении умень­шаются за счет большей неоднородности распределения напря­жений по сечениям, что тоже учитывается при определении рас­четных сопротивлений.

Коэффициент длительности нагружения т дл <С 1- Он учиты­вает, что древесина без пороков может неограниченно долго выдерживать лишь около половины той нагрузки, которую она выдерживает при кратковременном нагружении в процессе испытаний. Следовательно, ее длительное R in сопротивление Я йЛ почти Щ^ вдвое ниже кратковременного / t g.

Качество древесины естественно влияет на величины ее рас­четных сопротивлений. Древесина 1-го сорта - с наименьшими пороками имеет наибольшие расчетные сопротивления. Расчет­ные сопротивления древесины 2-го и 3-го сортов соответственно ниже. Например, расчетное сопротивление древесины сосны и ели 2-го сорта сжатию получается из выражения

%. = # с н т дл /у= 25-0,66/1,25 = 13 МПа.

Расчетные сопротивления древесины сосны и ели сжатию, растяжению, изгибу, скалыванию и смятию приведены в прилож. 6.

Коэффициенты условий работы т к расчетным сопротивле­ниям древесины учитывают условия, в которых изготовляются и работают деревянные конструкции. Коэффициент породы т„ учитывает различную прочность древесины разных пород, отли­чающихся от прочности древесины сосны и ели. Коэффициент нагрузки т„ учитывает кратковременность действия ветровой и монтажных нагрузок. При смятии т н = 1,4, при остальных видах напряжений т н = 1,2. Коэффициент высоты сечений при изгибе древесины клеедеревянных балок с высотой сечения более 50 см /72б снижается от 1 до 0,8, при высоте сечения 120 см - еще более. Коэффициент толщины слоев клеедеревянных элемен­тов учитывает повышение их прочности при сжатии и изгибе по мере уменьшения толщины склеиваемых досок, в результате чего увеличивается однородность строения клееной древесины. Значения его находятся в пределах 0,95...1,1. Коэффициент гнутья m rH учитывает дополнительные напряжения изгиба, возни­кающие при выгибе досок в процессе изготовления гнутых клеедеревянных элементов. Он зависит от отношения радиуса выгиба к толщине досок г/б и имеет значения 1,0...0,8 при увеличении этого отношения от 150 до 250. Коэффициент температуры m t учитывает снижение прочности древесины конструкций, работа­ющих при температуре от +35 до +50 °С. Он уменьшается от 1,0 до 0,8. Коэффициент влажности т вл учитывает снижение прочности древесины конструкций, работающих во влажной сре­де. При влажности воздуха в помещениях от 75 до 95 % т вл = 0,9. На открытом воздухе в сухой и нормальных зонах т вл = 0,85. При постоянном увлажнении и в воде т вл = 0,75. Коэффициент концентрации напряжения т к = 0,8 учитывает местное снижение прочности древесины в зонах врезками и отверстиями при растя­жении. Коэффициент длительности нагрузок т дл = 0,8 учитывает снижение прочности древесины в результате того, что длитель­ные нагрузки составляют иногда более 80 % от общей суммы нагрузок, действующих на конструкцию.

Модуль упругости древесины , определенный при кратковременных лабораторных испытаниях, Е кр = 15-Ю 3 МПа. При учете деформаций при длительном нагружении, при расчете по прогибам £=10 4 МПа (прилож. 7).

Нормативные и расчетные сопротивления строительной фане­ры были получены теми же способами, что и для древесины. При этом учитывалась ее листовая форма и нечетное число слоев с взаимно перпендикулярным направлением волокон. По­этому прочность фанеры по этим двум направлениям различна и вдоль наружных волокон она несколько выше.

Наиболее широко применяется в конструкциях семислойная фанера марки ФСФ. Ее расчетные сопротивления вдоль волокон наружных шпонов равны: растяжению # ф. р = 14 МПа, сжатию #ф. с = 12 МПа, изгибу из плоскости /? ф.„ = 16 МПа, скалыванию в плоскости # ф. ск = 0,8 МПа и срезу /? ф. ср - 6 МПа. Поперек волокон наружных шпонов эти величины соответственно равны: растяжению Я ф _ р = 9 МПа, сжатию # ф. с = 8,5 МПа, изгибу # Ф.и = 6,5 МПа, скалыванию R$. CK = 0,8 МПа, срезу # ф. ср = = 6 МПа. Модули упругости и сдвига вдоль наружных волокон равны соответственно Ё ф = 9-10 3 МПа и б ф = 750 МПа и по­перек наружных волокон £ ф = 6-10 3 МПа и G$ = 750 МПа.

Расчет на прочность может производиться по одной из двух методик - по предельному состоянию, или по допускаемым напряжениям. Методика расчета по допускаемым напряжениям принята при расчете машиностроительных конструкций, и основы ее использования приведены в курсе «Сопротивления материалов». При расчете строительных конструкций принята методика расчета по предельному состоянию, более совершенная, чем методика расчета по допускаемым напряжениям.

Предельное напряженное состояние – состояние, когда в точке возникает напряженное состояние, ведущее к возникновению нового процесса. Например, к развитию пластической деформации, к образованию трещины и т.д. Различные ПНС возникают при различных видах нагружения.

Предельное состояние – такое состояние, при котором конструкция теряет работоспособность или ее состояние становится нежелательной. Усилия вызывающие предельное состояние называются предельными

Следует различать предельные состояния и предельные напряженные состояния. Не всегда эти понятия совпадают. Примеры:

Увеличение напряжений при изгибе балки до предела текучести приводит достижению ПНС в точках максимально удаленных от нейтральной линии. Дальнейшее увеличение нагрузки приводит к достижению напряжениями уровня предела текучести во всем сечении – предельного состояния в сечении, в конструкции происходит качественные изменения, перемещения резко увеличиваются, поскольку в наиболее нагруженном сечении образуется пластический шарнир.

Увеличение напряжений при растяжении приводит к последовательному появлению следующих предельных напряженных состояний: а) начала равномерной пластической деформации; б) образования шейки; в) разрушения.

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

    первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

    вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

    разрушением любого характера (например, пластическим, хрупким, усталостным);

    потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

    потерей устойчивости положения;

    переходом в изменяемую систему;

    качественным изменением конфигурации;

    другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

    достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;

    достижением предельных уровней колебаний конструкций или оснований;

    образованием трещин;

    достижением предельных раскрытий или длин трещин;

    потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

    другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Первое предельное состояние для растянутых и сжатых элементов выражается соотношением:

где
– расчетное сопротивление по пределу текучести;

– предел текучести;

– коэффициент надежности по материалу (γ С >1);

– расчетное сопротивление по пределу прочности;

– предел прочности;

– коэффициент условий работы (γ С <1);

-коэффициент надежности для элементов конструкций, рассчитываемых на прочность с использованием расчетных сопротивленийR u ;

– площадь поперечного сечения растянутого (сжатого) элемента.

Для изгибаемых элементов:

Формально величину в правой части неравенств (2 .0), (2 .0), (2 .0), мы можем принять за допускаемое напряжение, приемы расчета по предельному состоянию и допускаемым напряжениям совпадают, однако при расчете по предельным состояниям общий и неизменный коэффициент запаса прочности заменяется несколькими переменными величинами. Это позволяет при расчете по предельному состоянию проектировать эксплуатационно равнопрочные конструкции.

При определении расчетных сопротивлений для сварных швов R W учитываются следующее: основной материал сварной конструкции, вспомогательные материалы используемые при сварке (марки покрытых электродов, электродных проволок), наличие либо отсутствие физических методов контроля сварного шва.

С 1955 г. расчет железобетонных конструкций в нашей стране производится по методу предельных состояний.

· Под предельным понимают такое состояние конструкции, после достижения, которого дальнейшая эксплуатация становится невозможной вследствие потери спо­собности сопротивляться внешним нагрузкам или получения недопустимых перемещений или местных повреждений. В соответствии с этим установлены две группы предельных состояний: первая - по несущей способности; вторая - по пригодности к нормальной эксплуатации.

· Расчет по первой группе предельных состояний выполняется с целью предотвращения разрушения конструкций (расчет по прочности), потери устойчивости формы конструкции (расчет на продольный изгиб) или ее положения (расчет на опрокидывание или скольжение), усталостного разрушения (расчет на выносливость).

· Расчет по второй группе предельных состояний имеет цель не допустить развитие чрезмерных деформаций (прогибов), исключить возможность образования трещин в бетоне или ограничить ширину их раскрытия, а также обеспечить в необходимых случаях закрытие трещин после снятия части нагрузки.

Расчет по первой группе предельных состояний является основным и используется при подборе сечений. Расчет по второй группе производится для тех конструкций, которые, будучи прочными, теряют свои эксплуатационные качества вследствие чрезмерных прогибов (балки, больших пролетов при относительно малой нагрузке), образования трещин (резервуары, напорные трубопроводы) или чрезмерного раскрытия трещин, приводящего к преждевременной коррозии арматуры.

Нагрузки, действующие на конструкцию, и прочностные характеристики материалов, из которых конструкция изготовлена, обладают изменчивостью и могут отличаться от средних значений. Поэтому для обеспечения того, чтобы за время нормальной эксплуатации сооружения не наступило ни одного из предельных состояний, вводится система расчетных коэффициентов, учитывающих возможные отклонения (в неблагоприятную сторону) различных факторов, влияющих на надежную работу конструкций: 1) коэффициенты надежности по нагрузке γ f , учитывающие изменчивость нагрузок или воздействий; 2) коэффициенты надежности по бетону γ b и арматуре γ s . учитывающие изменчивость их прочностных свойств; 3) коэффициенты надежности по назначению конструкции γ n , учитывающие степень ответственности и капитальности зданий и сооружений; 4) коэффициенты условий работы γ bi и γ si , позволяющие оценить некоторые особенности работы материалов и конструкций в целом, которые не могут быть отражены в расчетах прямым путем.

Расчетные коэффициенты устанавливают на основе вероятностно-статистических методов. Они обеспечивают требуемую надежность работы конструкций для всех стадий: изготовления, транспортирования, возведения и эксплуатации.

Таким образом, основная идея метода расчета по предельным состояниям заключается в обеспечении условия, чтобы даже в тех редких случаях, когда на конструкцию действуют максимально возможные нагрузки, прочность бетона и арматуры минимальна, а условия эксплуатации наиболее неблагоприятны, конструкция не разрушилась и не получила бы недопустимых прогибов или трещин. При этом во многих случаях удается получать более экономичные решения, нежели при расчете ранее применявшимися методами.

Нагрузки и воздействия . При проектировании следует учитывать нагрузки, возникающие при возведении и эксплуатации сооружений, а также при изготовлении, хранении и перевозке строительных конструкций.

В расчетах используют нормативные и расчетные значения нагрузок. Установленные нормами наибольшие значения нагрузок, которые могут действовать на конструкцию при ее нормальной эксплуатации, называют нормативными*. Фактическая нагрузка в силу разных обстоятельств может отличаться от нормативной в большую или меньшую сторону. Это отклонение учитывается коэффициентом надежности по нагрузке.

Расчет конструкций производится на расчетные нагрузки

где q n - нормативная нагрузка; γ f - коэффициент надежности по нагрузке, соответствующий рассматриваемому предельному состоянию.

При расчете по первой группе предельных состояний γ f принимают: для постоянных нагрузок γ f = 1,1...1,3; временных γ f = 1,2...1,6, при расчете на устойчивость положения (опрокидывание, скольжение, всплытие), когда уменьшение веса конструкции ухудшает условия ее работы, принимают

Расчет конструкций по второй группе предельных состояний, учитывая меньшую опасность их наступления, производят на расчетные нагрузки при γ f = l. Исключение составляют конструкции, относящиеся к I категории трещиностойкости (см. § 7.1), для которых γ f >l.

Нагрузки и воздействия на здания и сооружения могут быть постоянными и временными. Последние в зависимости от продолжительности действия подразделяются на длительные, кратковременные и особые.

К постоянным нагрузкам относятся вес частей сооружений, в том числе вес несущих и ограждающих конструкций; вес и давление грунтов (насыпей, засыпок); воздействие предварительного напряжения.

К временным длительным нагрузкам относятся: вес стационарного оборудования - станков, моторов, емкостей, конвейеров; вес жидкостей и твердых тел, заполняющих оборудование; нагрузка на перекрытия от складируемых материалов и стеллажей в складах, холодильниках, книгохранилищах, библиотеках и подсобных помещениях.

В тех случаях, когда требуется учитывать влияние длительности действия нагрузок на деформации и образование трещин, к длительным нагрузкам относится часть кратковременных. Это нагрузки от кранов с пониженным нормативным значением, определяемым умножением полного нормативного значения вертикальной нагрузки от одного крана в каждом пролете на коэффициент: 0,5 - для групп режима работы кранов 4К-6К; 0,6 - для групп режима работы кранов 7K; 0,7 - для групп режима работы кранов 8К*; снеговые нагрузки с пониженным нормативным значением, определяемым умножением полного нормативного значения (см. §11.4) на коэффициент 0,3 - для III снегового района, 0,5 - для IV района, 0,6 - для районов V, VI; нагрузки от лю­дей, оборудования на перекрытия жилых и общественных зданий с пониженными нормативными значениями . Эти нагрузки отнесены к длительным вследствие того, что могут действовать в течение времени, достаточного, чтобы проявились деформации ползучести, увеличиваю­щие прогиб и ширину раскрытия трещин.

К кратковременным нагрузкам относятся: нагрузки от веса людей, оборудования на перекрытия жилых и общественных зданий с полными нормативными значениями; нагрузки от кранов с полным нормативным значением; снеговые нагрузки с полным нормативным значением; ветровые нагрузки, а также нагрузки, возникающие при монтаже или ремонте конструкций.

Особые нагрузки возникают при сейсмических, взрывных или аварийных воздействиях.

Здания и сооружения подвергаются одновременному действию различных нагрузок, поэтому расчет их должен выполняться с учетом наиболее неблагоприятного сочетания этих нагрузок или усилий, вызванных ими. В зависимости от состава учитываемых нагрузок различают: основные сочетания, состоящие из постоянных, длительных и кратковременных нагрузок; особые сочетания, состоящие из постоянных, длительных, кратковременных и одной из особых нагрузок.

Временные нагрузки включаются в сочетания как длительные - при учете пониженного нормативного значения, как кратковременные - при учете полного нормативного значения.

Вероятность одновременного появления наибольших нагрузок или усилий учитывается коэффициентами сочетаний ψ 1 и ψ 2 . Если в основное сочетание включается постоянная и только одна временная нагрузка (длительная и кратковременная), то коэффициенты сочетаний принимают равными 1, при учете двух и более временных нагрузок последние умножают на ψ 1 = 0,95 при длительных нагрузках и ψ 1 = 0,9 при кратковременных, так как считается маловероятным, чтобы они одновременно достигали наибольших расчетных значений.

* Группы режимов работы кранов зависят от условий работы кранов, грузоподъемности и принимаются по ГОСТ 25546-82.

При расчете конструкций на особое сочетание нагрузок, включающих взрывные воздействия, допускается не учитывать кратковременные нагрузки.

Значения расчетных нагрузок должны умножаться также на коэффициент надежности по назначению конструкций, учитывающий степень ответственности и капитальности зданий и сооружений. Для сооружений I класса (объектов особо важного народнохозяйственного значения) γ n =1, для сооружений II класса (важные народнохозяйственные объекты) γ n =0,95, для сооружений III Класса (имеющих ограниченное народнохозяйственное значение) γ n =0,9, для временных сооружений со сроком службы до 5 лет γ n =0,8.

Нормативные и расчетные сопротивления бетона. Прочностные характеристики бетона обладают изменчивостью. Даже образцы из одной партии бетона покажут при испытании разную прочность, что объясняется неоднородностью его структуры и неодинаковыми условиями испытаний. На изменчивость прочности бетона в конструкциях также влияют качество оборудования, квалификация рабочих, вид бетона и другие факторы.

Рис. 2.3. Кривые распределения:

F m и F - среднестатистическое и расчетное значения

усилий от внешней нагрузки;

F um и F u - то же, несущей способности

Из всех возможных значений прочности в расчет необходимо вводить такое, которое с необходимой надежностью обеспечивает безопасную эксплуатацию конструкций. Установить его помогают методы теории вероятностей.

Изменчивость прочностных свойств подчиняется, как правило, закону Гаусса и характеризуется кривой распределения (рис. 2.3, а), которая связывает прочностные характеристики бетона с частотой их повторения в опытах. Пользуясь кривой распределения, можно вычислить среднее значение временного сопротивления бетона сжатию:

где n 1 , n 2 ,.., n k - число опытов, в которых была зафиксирована прочность R 1 , R 2 ,…, R k , n - общее число опытов. Разброс прочности (отклонение от среднего) характеризуется среднеквадратическим отклонением (стандартом)

или коэффициентом вариации ν = σ/R m . В формуле (2.8) Δ i = R i - R m .

Вычислив σ, можно методами теории вероятностей найти значение прочности R n , которое будет иметь заданную надежность (обеспеченность):

где æ - показатель надежности.

Чем выше æ (см. рис. 2.3,а), тем большее число образцов покажут прочность R m - æσ и более, тем выше надежность. Если за минимальную прочность, вводимую в расчет, принять R n =R m - σ (т.е. задаваясь æ = 1), то 84% всех образцов (ими могут быть кубы, призмы, восьмерки) покажут такую же или большую прочность (надежность 0,84). При æ = 1,64- 95% образцов покажут прочность R n =R m - 1,64σ и более, а при æ = 3 - 99,9 % образцов будут обладать прочностью не ниже R n =R m -Зσ . Таким образом, если ввести в расчет зна­чение R m -Зσ, то только в одном случае из тысячи прочность окажется ниже принятой. Такое явление считается практически невероятным.

Согласно нормам основной контролируемой на заводе характеристикой является класс бетона «В»*, представляющий прочность бетонного куба с ребром 15 см с надежностью 0,95. Прочность, соответствующую классу, определяют по формуле (2.9) при æ =1,64

Значение ν может изменяться в широких пределах.

Заводу-изготовителю необходимо обеспечить соответствующую классу бетона прочность R n с учетом коэффициента ν, определяемого для конкретных условий производства. На предприятиях с хорошо организованным производством (выпускающим бетон с высокой однородностью) фактический коэффициент вариации будет невелик, средняя прочность бетона [см. формулу (2.10)] может быть принята более низкой, таким образом можно сберечь цемент. Если же выпускаемый предприятием бетон имеет большую изменчивость прочности (большой коэффициент вариации), то необходимо для обеспечения требуемых значений R n повысить прочность бетона R m , что вызовет перерасход цемента.

* До 1984 г. основной характеристикой прочности бетона являлась его марка, которая определялась как среднее значение временного сопротивления бетона сжатию R m в кгс/см 2 .

Нормативное сопротивление бетонных призм осевому сжатию R b,n (призменная прочность) определяется по нормативному значению кубиковой прочности с учетом зависимости (1.1), связывающей призменную и кубиковую прочность. Значения R b,n приведены в табл. 2.1.

Нормативные сопротивления бетона осевому растяжению R bt,n в случаях, когда прочность бетона на растяжение не контролируется, определяются по нормативному значению кубиковой прочности с учетом зависимости (1.2), связывающей прочность на растяжение с прочностью на сжатие. Значения R bt,n приведены в табл. 2.1.

Если же прочность бетона на растяжение контролируется непосредственным испытанием образцов на производстве, то нормативное сопротивление осевому растяжению принимается равным

и характеризует класс бетона по прочности на растяжение.

Расчетные сопротивления бетона для предельных состояний первой группы R b и R bt определяют делением нормативных сопротивлений на соответствующие коэффициенты надежности бетона при сжатии γ bc или при растяжении γ bt:

Для тяжелого бетона γ bc = 1,3; γ bt = 1,5.

Эти коэффициенты учитывают возможность понижения фактической прочности по сравнению с нормативной вследствие отличия прочности бетона в реальных конструкциях от прочности в образцах и ряд других факторов, зависящих от условий изготовления и эксплуатации конструкций.

Таблица 2.1.

Прочностные и деформативные характеристики тяжелого бетона

Класс бетона по прочности на сжатие

Нормативные сопротивления и расчетные сопротивления бетона для расчета по предельным состояниям II группы, МПа

Расчетные сопротивления бетона при расчете по предельным состояниям I группы, МПа

Начальный модуль упругости бетона при сжатии Е b ·10 -3 , МПа

сжатию R bn , R b,ser растяжению R btn , R bt,ser сжатию R b растяжению R bt естественного твердения подвергнутого тепловой обработке
В 7,5 В 10 В 12,5 В 15 В 20 В 25 В 30 В 35 В 40 В 45 В 50 В 55 В60 5,50 7,50 9,50 11,0 15,0 18,5 22,0 25,5 29,0 32,0 36,0 39,5 43,0 0,70 0,85 1,00 1,15 1,40 1,60 1,80 1,95 2,10 2,20 2,30 2,40 2,50 4,50 6,00 7,50 8,50 11,5 14,5 17,0 19,5 22,0 25,0 27,5 30,0 33,0 0,480 0,570 0,660 0,750 0,900 1,05 1,20 1,30 1,40 1,45 1,55 1,60 1,65 16,0 18,0 21,0 23,0 27,0 30,0 32,5 34,5 36,0 37,5 39,0 39,5 40,0 14,5 16,0 19,0 20,5 24,5 27,0 29,0 31,0 32,5 34,0 35,0 35,5 36,0

Расчетные сопротивления бетона для предельных состояний II группы R b,ser и R bt,ser определяются при коэффициентах надежности γ bc = γ bt = 1, т.е. принимаются равными нормативным сопротивлениям. Это объясняется тем, что наступление предельных состояний II группы менее опасно, чем I группы, поскольку оно, как правило, не приводит к обрушению сооружений и их элементов.

При расчете бетонных и железобетонных конструкций расчетные сопротивления бетона в необходимых случаях умножают на коэффициенты условий работы γ bi , учитывающие: длительность действия и повторяемость нагрузки, условия изготовления, характер работы конструкции и т. п. Например, с целью учета снижения прочности бетона, имеющего место при длительной нагрузке, вводят коэффициент γ b 2 = 0,85...0,9, при учете нагрузок малой длительности - γ b 2 = 1,1 .

Нормативные и расчетные сопротивления арматуры . Нормативные сопротивления арматуры R sn принимают равными наименьшим контролируемым значениям : для стержневой арматуры, высокопрочной проволоки и арматурных канатов - пределу текучести, физическому σ y , или условному σ 0,2 ; для обыкновенной арматурной проволоки - напряжению, составляющему 0,75 от временного сопротивления разрыву, так как ГОСТ не регламентирует предела текучести для этой проволоки.

Значения нормативных сопротивлений R sn принимают в соответствии с действующими стандартами на арматурные стали, как и для бетона, с надежностью 0,95 (табл. 2.2).

Расчетные сопротивления арматуры растяжению R s и R s,ser для предельных состояний I и II группы (табл. 2.2) определяются делением нормативных сопротивлений на соответствующие коэффициенты надежности по арматуре γ s:

Коэффициент надежности устанавливают, чтобы исключить возможность разрушения элементов в случае чрезмерного сближения R s и R sn . Он учитывает изменчивость площади поперечного сечения стержней, раннее развитие пластических деформаций арматуры и т.п. Его значение для стержневой арматуры классов A-I, A-II составляет 1,05; классов A-III - 1,07...1,1; классов A-IV, A-V-1,15; классов A-VI - 1,2; для проволочной арматуры классов Bp-I, B-I - 1,1; классов В-II, Вр-II, К-7, К-19-1,2.

При расчете по предельным состояниям II группы значение коэффициента надежности для всех видов ар­матуры принято равным единице, т.е. расчетные сопротивления R s , s er численно разны нормативным.

При назначении расчетных сопротивлений арматуры сжатию R sc учитываются не только свойства стали, но и предельная сжимаемость бетона. Принимая ε bcu = 2Х·10 -3 , модуль упругости стали E s = 2·10 -5 МПа, можно получить наибольшее напряжение σ sc , достигаемое в арматуре перед разрушением бетона из условия совместных деформаций бетона и арматуры σ sc = ε bcu E s = ε s E s . Согласно нормам расчетное сопротивление арматуры сжатию R sc принимают равным R s , если оно не превышает 400 МПа; для арматуры с более высоким значением R s , расчетное сопротивление R sc принимают 400 МПа (или 330 МПа при расчете в стадии обжатия). При длительном действии нагрузки ползучесть бетона приводит к повышению напряжения сжатия в арматуре. Поэтому если расчетное сопротивление бетона принимают с учетом коэффициента условий работы γ b 2 = 0,85...0,9 (т.е. с учетом продолжительного действия нагрузки), то допускается при соблюдении соответствующих конструктивных требований повышать значение R sc до 450 МПа для сталей класса A-IV и до 500 МПа для сталей классов Ат-IV и выше.

При расчетах конструкций по I группе предельных состояний расчетные сопротивления арматуры в необходимых случаях умножаются на коэффициенты условий работы γ si , учитывающие неравномерность распределения напряжений в сечении, наличие сварных соединений, многократное действие нагрузки и др. Например, работа высокопрочной арматуры при напряжениях выше условного предела текучести учитывается коэффициентом условий работы γ s6 , величина которого зависит от класса арматуры и изменяется от 1,1 до 1,2 (см. § 4.2).

Таблица 2.2.

Прочностные и деформативные характеристики

арматурных сталей и канатов.

арматуры

Нормативные R sn и расчетные сопротивления при расчете по предельным состояниям II группы R s , ser , мПа

Расчетные сопротивления арматуры, МПа,

при расчете по предельному состоянию I группы

упругости E s , 10 5 МПа

растяжению

продольной и поперечной при расчете наклонных сечений на действие изгибающего момента R s поперечной при расчете наклонных сечений на действие поперечной силы R sw
Стержневая
A-I 6…40 235 225 175 225 2,1
A-II 10…80 295 280 225 280 2,1
A-III 6…8 390 355 285 355 2,0
10…40 390 365 290 365 2,0
A-IV 10…28 590 510 405 400 1,9
A-V 10…32 785 680 545 400 1,9
A-VI 10…28 980 815 650 400 1,9
A-IIIв (с контролем удлинения и напряжения) 20…40 540 490 390 200 1,8
Проволочная
Вр-I 3...5 410...395 375...360 270...260 375...360 1,7
В-II 3...8 1490...1100 1240...915 990...730 400 2,0
Вр-II 3...8 1460...1020 1215...850 970...680 400 2,0
Канатная
К-7 6...15 1450...1290 1210...1080 965...865 400 1,8
К-19 14 1410 1175 940 400 1,8

Примечание. В таблице под классами стержневой арматуры подразумевают все виды арматуры соответствующего класса, например, под классом А-V подразумевают также А т -V, А т -VCK и т. п.

■ Основные положения расчета.

· При расчете по I группе предельных состояний (несущей способности) должно выполняться условие

F

Левая часть выражения (2.14) представляет собой расчетное усилие, равное практически возможному максимальному усилию в сечении элемента при невыгоднейшей комбинации расчетных нагрузок или воздействий; оно зависит от усилий, вызванных расчетными нагрузками q при γ f >1, коэффициентов сочетаний и коэффициентов надежности по назначению конструкций γ n . Рас­четное усилие F не должно превышать расчетную несущую способность сечения F u , которая является функцией расчетных сопротивлений материалов и коэффициентов условий работы γ bi , γ si , учитывающих неблагоприятные или благоприятные условия эксплуатации конструкций, а также формы и размеры сечения.

Кривые (рис. 2.3,б) распределения усилий от внешней нагрузки 1 и несущей способности 2 зависят от изменчивости рассмотренных выше факторов и подчиняются закону Гаусса. Выполнение условия (2.14), выраженного графически, гарантирует требуемую несущую способность конструкции.

При расчете по II группе предельных состояний:

· по перемещениям - требуется, чтобы прогибы от нормативной нагрузки f не превышали предельных значений прогибов f u , установленных нормами для данного конструктивного элемента f ≤ f u . Значение f u принимают по ;

· по образованию трещин - усилие от расчетной или нормативной нагрузки должно быть меньше или равно усилию, при котором возникают трещины в сечении F ≤ F crc ;

· по раскрытию нормальных и наклонных трещин - ширина их раскрытия на уровне растянутой арматуры должна быть меньше установленного нормами предельного их раскрытия a cr c , u a crc ≤ a cr c , u = 0,l...0,4 мм.

В необходимых случаях требуется, чтобы трещины, образовавшиеся от полной нагрузки, были бы надежно закрыты (зажаты) при действии длительной ее части. В этих случаях производится расчет по закрытию трещин.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ:

1. Стадии напряженно-деформированного состояния изгибаемых железобетонных элементов. Какие из этих стадий используются при расчете прочности, трещиностойкости, прогибов?

2. Особенности напряженно-деформированного состояния предварительно напряженных конструкций.

3. Основные положения методов расчета сечений по допускаемым напряжениям и разрушающим нагрузкам. Недостатки этих методов.

4. Основные положения расчета по методу предельных состояний.

Группы предельных состояний.

5. Каковы цели расчета по I и II группам предельных состояний?

6. Классификация нагрузок и их расчетные сочетания.

7. Нормативные и расчетные нагрузки. Коэффициенты надежности

по нагрузкам. В каких пределах они изменяются?

8. Нормативное сопротивление бетона. Как оно связано со средней

прочностью? С какой обеспеченностью оно назначается?

9. Как определяется расчетное сопротивление бетона для I и II групп

предельных состояний? С какой целью вводятся коэффициенты надежности и коэффициенты условий работы?

10. Как назначается нормативное сопротивление арматуры для различных сталей?

11. Расчетные сопротивления арматуры, коэффициенты надежности

и условий работы.

12. Запишите в общем виде условия, исключающие наступление

предельных состояний I и II групп, и объясните их смысл.

Что такое предельные состояния и как с ними разобраться применительно к расчетам конструкций? Все знают, что бывает две группы предельных состояний: первая и вторая. Что же обозначает это разделение?

Само название «предельное состояние » обозначает, что для любой конструкции при определенных условиях наступает такое состояние, при котором исчерпывается какой-то определенный предел. Условно, для удобства расчетов, таких пределов вывели два: первое предельное состояние – это когда исчерпывается предел прочности, устойчивости и выносливости конструкции; второе предельное состояние – когда деформации конструкции превышают предельно допустимые (ко второму предельному состоянию для железобетона также относят ограничение по возникновению и раскрытию трещин).

Перед тем, как перейти к разбору расчетов по первому и второму предельному состоянию, следует разобраться, какая часть расчета конструкции вообще делится на эти две части. Любой расчет начинается со сбора нагрузки. Затем следует выбор расчетной схемы и непосредственно расчет, в результате которого мы определяем усилия в конструкции: моменты, продольные и поперечные силы. И только после того, как усилия определены, мы переходим к расчетам по первому и второму предельному состоянию. Обычно они выполняются именно в такой последовательности: сначала по первому, потом по второму. Хотя бывают и исключения, но о них ниже.

Нельзя сказать, что для какой-то конструкции важнее: прочность или деформативность, устойчивость или трещиностойкость. Нужно проводить расчет по двум предельным состояниям и выяснять, какое из ограничений бывает наиболее неблагоприятным. Но для каждого типа конструкций есть свои особые моменты, которые полезно знать, чтобы было проще ориентироваться в среде предельных состояний. В этой статье мы на примерах разберем предельные состояния для различных типов железобетонных конструкций.

Расчет балок, плит и других изгибаемых элементов по первому и второму предельному состоянию

Итак, вам нужно рассчитать изгибаемый элемент, и вы думаете, с чего начать расчет, и как понять, все ли посчитано? Все рекомендуют сделать расчет не только по первому, но и по второму предельному состоянию. Но что же это такое? Где конкретика?

Для расчета изгибаемых элементов вам понадобится «Пособие по проектированию бетонных и железобетонных конструкций из тяжелых бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)» и непосредственно сам СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» обязательно с изменением 1 (очень важным для расчета по второй группе предельных состояний).

Открываете раздел 3 пособия «Расчет железобетонных элементов по предельным состояниям первой группы», а именно «Расчет железобетонных элементов по прочности» (начиная с п. 3.10). Теперь нужно выяснить, из каких этапов он состоит:

– это та часть расчета, в которой мы проверяем, выдержит ли наша конструкция воздействие изгибающего момента. Проверяется сочетание двух важных факторов: размер сечения элемента и площадь продольной арматуры. Если проверка показывает, что действующий на конструкцию момент меньше предельно допустимого, значит все хорошо, и можно переходить к следующему этапу.

2) Расчет сечений, наклонных к продольной оси элемента – это расчет конструкции на действие поперечной силы. Для проверки нам важно установить размеры сечения элемента и площадь поперечной арматуры. Так же, как и на предыдущем этапе расчета, если действующая поперечная сила меньше предельно допустимой, прочность элемента считается обеспеченной.

Оба этапа вместе с примерами подробно рассмотрены в пособии. Эти два расчета являются исчерпывающими расчетами по прочности для классических изгибаемых элементов. Если есть какие-либо особые условия (многократно повторяющиеся нагрузки, динамика), их нужно учитывать в расчете на прочность и выносливость (зачастую, учет производится введением коэффициентов).

1) Расчет железобетонных элементов по образованию трещин – это самый первый этап, в котором мы выясняем, образуются ли трещины в нашем элементе при воздействии действующих на него усилий. Трещины не образуются, если наш максимальный момент Mr меньше момента Mcrc, вызывающего образование трещин.

2) Расчет железобетонных элементов по раскрытию трещин – это следующий этап, на котором мы проверяем величину раскрытия трещин в конструкции и сравниваем ее с допустимыми размерами. Обратите внимание на п. 4.5 пособия, в котором оговаривается, в каких случаях этот расчет выполнять не нужно – лишняя работа нам ни к чему. Если же расчет необходим, то нужно выполнить две его части:

а) расчет по раскрытию трещин, нормальных к продольной оси элемента – его мы выполняем по п. 4.7-4.9 пособия (с обязательным учетом изменения 1 к СНиП , т.к. расчет там уже кардинально другой);

б) расчет по раскрытию трещин, наклонных к продольной оси элемента – его нужно выполнять по п. 4.11 пособия, также с учетом изменения 1.

Естественно, если согласно первому этапу расчета трещины не образуются, то этап 2 мы пропускаем.

3) Определение прогиба – это последний этап расчета по второму предельному состоянию для изгибаемых железобетонных элементов, выполняется он согласно п. 4.22-4.24 пособия. В этом расчете нам нужно найти прогиб нашего элемента и сравнить его с прогибом, нормированным ДСТУ Б. В.1.2-3:2006 «Прогибы и перемещения».

Если все эти части расчетов выполнены, считайте, что расчет элемента как по первому, так и по второму предельному состоянию выполнен. Конечно, если есть какие-то особенности конструкции (подрезка на опоре, отверстия, сосредоточенные нагрузки и т.д.), то нужно дополнять расчет с учетом всех этих нюансов.

Расчет колонн и других центрально и внецентренно сжатых элементов по первому и второму предельному состоянию

Этапы этого расчета не особо отличаются от этапов расчета изгибаемых элементов, да и литература та же.

Расчет по предельному состоянию первой группы включает в себя:

1) Расчет сечений, нормальных к продольной оси элемента – этот расчет так же, как и для изгибаемых элементов, определяет необходимый размер сечения элемента и его продольное армирование. Но в отличие от расчета изгибаемых элементов, где проверяется прочность сечения на действие изгибающего момента М, в данном расчете выделяется максимальная вертикальная сила N и эксцентриситет приложения этой силы «е» (при перемножении, правда, они дают все тот же изгибающий момент). В пособии подробно изложена методика расчета для всех стандартных и нестандартных сечений (начиная с п. 3.50).

Особенностью данного расчета является то, что нужно учитывать влияние прогиба элемента, а также учитывается влияние косвенного армирования. Прогиб элемента определяется при расчете по второй группе предельных состояний, но допускается при расчете по первому предельному состоянию упростить расчет путем введения коэффициента согласно п. 3.54 пособия.

2) Расчет сечений, наклонных к продольной оси элемента – этот расчет на действие поперечной силы согласно п. 3.53 пособия аналогичен расчету изгибаемых элементов. В результате расчета мы получаем площадь поперечной арматуры в конструкции.

Расчет по предельному состоянию второй группы состоит из этапов:

1) Расчет железобетонных элементов по образованию трещин.

2) Расчет железобетонных элементов по раскрытию трещин.

Эти два этапа абсолютно аналогичны расчету изгибаемых элементов – имеются максимальные усилия, следует определить, образуются ли трещины; и если образуются, то сделать при необходимости расчет по раскрытию трещин, нормальных и наклонных к продольной оси элемента.

3) Определение прогиба . Точно так же, как и для изгибаемых элементов, нужно определять прогиб и для внецентренно сжатых элементов. Предельные прогибы как всегда можно найти в ДСТУ Б В.1.2-3:2006 «Прогибы и перемещения».

Расчет фундаментов по первому и второму предельному состоянию

Расчет фундаментов кардинально отличается от приведенных выше расчетов. Как всегда, при расчете фундаментов необходимо начать со сбора нагрузок либо с расчета каркаса здания, в результате которого определяться основные нагрузки на фундамент N, M, Q.

После того, как собраны нагрузки и выбран тип фундамента, необходимо перейти к расчету грунтового основания под фундаментом. Этот расчет, как и любые другие расчеты, делится на расчет по первому и по второму предельному состоянию:

1) обеспечение несущей способности основания фундамента – проверяется прочность и устойчивость оснований (первое предельное состояние) – пример расчета ленточного фундамента ;

2) расчет основания по деформациям – определение расчетного сопротивления грунта основания, определение осадки, определение крена фундамента (второе предельное состояние).

Разобраться с этим расчетом поможет «Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)».

Как вы уже поняли из формулировок, при определении размера подошвы фундамента (будь то лента или столбчатый фундамент), мы прежде всего выполняем расчет грунтового основания, а не фундамента. И в этом расчете (кроме скальных грунтов) намного важнее выполнить расчет основания по деформациям – все, что перечислено в пункте 2 выше. Расчет по первому предельному состоянию зачастую выполнять вообще не требуется, т.к. предотвратить деформации гораздо важнее, они возникают намного раньше, чем потеря грунтом несущей способности. В каких случаях следует выполнять расчет по первой группе предельных состояний, можно узнать из п. 2.259 пособия.

Теперь рассмотрим расчет основания по деформациям. Чаще всего проектировщики прикидывают расчетное сопротивление грунта, сравнивают его с нагрузкой на грунт от здания, подбирая необходимую площадь фундамента, и на этом останавливаются. Это неверный подход, т.к. выполнена лишь часть работы. Расчет фундамента считается завершенным, когда выполнены все этапы, перечисленные в пункте 2.

Очень важным является определение осадки фундаментов. Особенно это важно при различных нагрузках или неравномерных грунтах, когда есть риск возникновения неравномерных осадок фундаментов (подробно об этом изложено в этой статье "Что нужно знать о ленточном монолитном фундаменте"). Чтобы быть уверенным в дальнейшей целостности конструкций здания, всегда нужно проверять разность осадок фундаментов по таблице 72 пособия. Если разность осадок выше предельно допустимой, возникает риск возникновения трещин в конструкциях.

Крен фундамента необходимо определять при наличии изгибающих моментов, действующих на фундамент. Также крен нужно проверять при неравномерной нагрузке на грунте – она также влияет на деформации грунтового основания.

Но после того, как выполнен расчет основания по второму и возможно первому предельному состоянию и определены размеры подошвы фундамента, нужно перейти к следующему этапу: расчету самого фундамента.

При расчете основания мы определили давление под подошвой фундамента. Это давление прикладывается к подошве как нагрузка (направленная снизу вверх), а опорой служит колонна или стена, опирающаяся на фундамент (такой себе перевертыш). Получается, что в каждую сторону от опоры мы имеем консоль (обычно эти консоли одинаковые), и их нужно рассчитать с учетом равномерно распределенной нагрузки, равной давлению под подошвой фундамента. Хорошо понять принцип расчета на примере столбчатого фундамента можно с помощью «Пособия по проектированию фундаментов на естественном основании под колонны зданий и сооружений (к СНиП 2.03.01-84 и СНиП 2.02.01-83)» - там в примерах изложены все этапы расчета, как по первому, так и по второму предельному состоянию. По результатам расчета консоли мы сначала определяем высоту ее сечения и армирование (это расчет по первому предельному состоянию), затем проверяем трещиностойкость (это расчет по второму предельному состоянию).

Точно так же нужно действовать и в случае расчета ленточного фундамента: имея вылет подошвы в одну сторону от стены и давление под этой подошвой, мы рассчитываем консольную плиту (с защемлением на опоре), длина консоли равна вылету подошвы, ширина берется для удобства расчета равной одному метру, нагрузка на консоль равна давлению под подошвой фундамента. Находим максимальный момент и поперечную силу в консоли и выполняем расчет по первому и второму предельному состоянию – точно так, как описано в расчете изгибаемых элементов.

Таким образом, при расчете фундаментов мы проходим два случая расчета по предельным состояниям первой и второй группы: сначала при расчете основания, затем при расчете непосредственно фундамента.

Выводы . При любом расчете важно соблюсти последовательность:

1) Сбор нагрузок.

2) Выбор расчетной схемы.

3) Определение усилий N, M и Q.

4) Расчет элемента по первому предельному состоянию (по прочности и устойчивости).

5) Расчет элемента по второму предельному состоянию (по деформативности и трещиностойкости).

class="eliadunit">

Комментарии

0 #15 Иринa 17.10.2018 19:39

Цитата:

Я теж знаю, що раніше прогини рахувались по нормативним навантаженням

И Вы тоже ошибаетесь.
Вот цитата из СНиП 85го года:
Цитата:

Расчетное значение нагрузки следует определять как произведение ее нормативного значения на коэффициент надежности по нагрузке СНиП 2.01.07-85* Нагрузки и воздействия (с Изменениями N 1, 2), соответствующий рассматриваемому предельному состоянию и принимаемый: а)* при расчете на прочность и устойчивость - в соответствии с пп.2.2, 3.4, 3.7, 3.11, 4.8, 6.11, 7.3 и 8.7; б) при расчете на выносливость - равным единице; в) в расчетах по деформациям - равным единице, если в нормах проектирования конструкций и оснований не установлены другие значения; г) при расчете по другим видам предельных состояний - по нормам проектирования конструкций и оснований.

Цитата:

От я і намагаюсь розібратись чи можна відповідно до оновлених норм користуватись нормтивними (характеристични ми) значеннями навантажень чи, все таки, необхідн окористуватись розрахунковими значеннями, але без коефіцієнтів для СС1...СС3. Якщо це не так, то де ще це прописано.

Вам, как и русскоязычному Валерию (если вы разные Валерии) рекомендую почитать статью