Автоматический полив на даче – какую систему выбрать? Как изготовить автополив на даче для растений своими руками

Экология потребления.Усадьба:Наконец-то стало реально собрать удобный, функциональный, недорогой комплект «умный дом» из доступных простых компонентов.

Когда-то, уже давным-давно, когда я ввязался в тему разработки электроники, на рынке «умно-домовых» устройств было пусто. Пусто - для меня. Мне хотелось использовать устройства, одновременно, и достаточно недорогие, и адекватно функциональные. Дешевые девайсы на 433-ем радиоканале для этого не подходили в силу своей простоты. У них нет обратной связи, нет шифрования. Легко можно прослушать команды управления в эфире и делать с «его» умным домом любые пакости. Нельзя быть уверенным, включилось ли реально устройство в результате посланной команды. Всё остальное имело неадекватный ценник.

С тех пор утекло много воды. Разработка диммера так и не дошла до финала. Не получилось устранить все проблемы с питанием - wi-fi модуль довольно прожорлив и недостаточно стабильно работает в нашей схеме включения. Пока разработка вяло текла, рынок заполнился светодиодными лампами, не диммируемыми в своем большинстве. Изменилось моё понимание умного дома. Вроде бы диммер в том его формате, как мной задумывался, не очень-то и нужен. Ибо «умный дом» должен работать сам, без выключателей. Изменился курс доллара, что осложнило разработку любого электронного проекта, а разработку диммера осложнило значительно. Устройство у него не простое, себестоимость высокая и зависит она от доллара практически напрямую. Поэтому проект диммера пока на паузе. До лучших времен. Или насовсем.

Своего решения всё не было и не было, а дача строилась. Если в квартире «умный дом» все-таки больше «погремушка», то за городом автоматика может сделать жизнь значительно более комфортной. Я регулярно искал возможные решения от других производителей. И все не находил. До недавнего времени.

Нежданная находка

Бродя в очередной раз по сети и решив зайти на сайт ITEAD, я обнаружил очень интересное обновление ассортимента. Товарищи начали выпускать недорогое, да что греха таить - копеечное (от $6 за модуль, $4,85 по акции), решение для управления силовой нагрузкой. Готовое, в корпусе, с адекватной схемой включения, с обратной связью, с управлением через мобильное приложение, как локально, так и через облако. Вытерев слюни с рабочего стола я понял, что будущее уже здесь и наконец-то появилось решение для автоматизации моего дачного хозяйства. Дёшево и вроде как даже совершенно не сердито.

Экономика

На свою первую покупку я потратил $32,71. Взял два модуля просто с вайфаем по $4,85 (по акции, позже ценник поднимется до $6) и два с дополнительным 433Мгц-интерфейсом на борту по $7,20 (позже обещают поднять до $9,50). Доставка Китай-Екатеринбург стоила $8,61, суммарный ценник за посылку с доставкой - $32,71.

В рублях с карты списалось 2 605,01 RUB, то есть доллар был грубо по 80 и стоимость модулей с учетом доставки в рублях составила 550 за простую модель и 750 за фильдеперсовую. С таким ценообразованием, если у производителя это не сильно временная акция, новые модули - безусловный хит, переплюнуть который вряд ли кому-либо удастся. Подробнее о функционале модулей будет чуть ниже.

Картонная коробочка. Крепеж в комплекте. Качественный пластиковый корпус. Аккуратная печатная плата. Более чем подходящий форм-фактор для автоматизации дачи или загородного дома. Для квартиры, возможно, размер чуть великоват. Куча фотографий расскажет о качестве лучше лучше любых слов.

При этом производителю есть, куда стремиться. Если уж совсем приглядываться и придираться, то можно обратить внимание, что у модулей по-разному выдаются из глубины корпуса кнопки управления и светодиоды. Конечно, это не критично.

Как это работает?

Очень просто, удобно, доступно. На Android или Apple-смартфон ставится фирменное приложение. Ищется в магазине приложений по не очень релевантному названию «eWeLink». Я ставил только на андроид, и описываю поведение только на нем, на iOS алгоритм может чутка различаться.

Запускаем приложение. Регистрируемся в системе, указывая номер телефона и код, пришедший по смс. Нажимаем «Добавить устройство». Включаем в сеть Sonoff. Долго жмем его единственную кнопку управления до того, как она начнет быстро мигать. Смартфон находит модуль, предлагает ввести название для него и указать параметры wi-fi-сети, в которой модуль будет работать. Всё, настройка окончена.

После этого мы имеем возможность управлять девайсом из локальной wi-fi сети. Если мы находимся не в ней, а локальная wi-fi-сеть подключена к интернету, то без каких-либо переключений и дополнительных настроек задействуется облако. В приложении отображается, какие выключатели находятся на связи, какие в оффлайне. Выключателями на связи можно управлять, включая и выключая их. Статус выключателя на экране меняется только после реального переключения железки. Обратная связь есть и работает.

Расширенную версию модуля с 433Мгц-интерфейсом можно легко подружить с дешевым китайским пультиком или PIR-сенсором. При переключения состояния модуля с 433Мгц-интерфейса состояние модуля в приложении мгновенно меняется. То же происходит и при локальном включении-выключении модуля путем короткого нажатия на его кнопку управления.

Все подключенные устройства отображаются в приложении. Устройства можно расшаривать между аккаунтами. Например, можно наградить супругу возможностью управлять каким-то небольшим куском вашего умного дома с ее смартфона.

Как применить?

Я приобрел себе четыре модуля для реализации «программы-минимум» по автоматизации своей дачи. Модули только с wi-fi на борту будут управлять конвекторами в предбаннике и в теплой комнате дома. Чтобы я имел возможность включить их заранее из города, перед выездом на дачу. Мечтаю приезжать в уже теплые прогретые помещения. Модули с дополнительным 433Мгц будут использованы для управления освещением на участке. Хочется включать свет из машины на подъезде к участку, хочется выключать свет около бани уже из дома, чтобы не гулять в темноте. Дополнительный радиоинтерфейс понадобится для спаривания с какими-нибудь дешевыми радиокнопками. Конвекторами достаточно комфортно будет управлять только через приложение, свет на улице хочется дополнительно уметь включать-выключать реальными выключателями.

Чтобы нормально подключить эти четыре модуля, я купил супербюджетный «комплект умного дома», состоящий из:

а) старого роутера ASUS WL500Gp со сгоревшим блоком питания (300 рублей),

б) нового блока питания для роутера (100 рублей),

в) 4G-модема, втыкающегося в роутерный разъем USB (400 рублей).

Итого 800 рублей, прибавим к ним потраченные на модули 2600, получится 3400 рублей. За полноценное управление четырьмя точками через интернет с обратной связью. Бюджетнее решения, думаю, выдумать просто не реально. Даже если паять модули самому.

Система собрана в тестовом режиме у меня в офисе, настроен openwrt, протестирована работа с реальным 1,5кВт конвектором и скоро будет инсталлирована на даче. Позже к роутеру добавится ардуинка с разными полезными датчиками и небольшой веб-интерфейс. В серии постов про «Умную дачу» я покажу, что наконец-то стало реально собрать удобный, функциональный, недорогой комплект «умный дом» из доступных простых компонентов. опубликовано

Присоединяйтесь к нам в

Немало обсуждений и дебатов было в комментариях к моим обзорам устройств дачной автоматики. Решил описать конкретную реализацию дачного водопровода, где вода подается по расписанию и хотелось иметь в нескольких точках как горячую, так и холодную воду, вдобавок иметь ряд защит и визуализацию. Я понимаю, что не сезон, но впереди зима и к следующему сезону вполне можно готовиться сейчас (готовим сани летом...). Подробнее под катом…

Первым делом расскажу про цели. Требуется иметь душ с горячей и холодной водой, пригодной для умывания, раковину на улице для мытья рук и прочего, а также горячую и холодную воду в доме для посуды и прочих хозяйственных нужд.

Исходный расклад: имеется вода, подаваемая по расписанию для полива (сомнительного качества), септики (водой в бане пользовались и раковина тоже была с умывальником, в который наливалась вода), на даче имеется круглосуточное относительно стабильное электричество.

Для размещения оборудования водоснабжения (бочка, насос, бойлер и электроника) был выбран чердак бани, так как это помещение относительно защищенное, близко расположено к распределительной трубе и в бане имеется электричество. К тому же, баня расположена так, что ее видно практически со всех мест участка, это позволит удобно расположить индикацию.

Общая схема дачного водопровода:


Темно синим показано движение неочищенной воды из водопровода, голубым холодная очищенная вода после фильтров, красным горячая вода. Базовым элементом является насос, он предназначен для повышения давления (с самотека до приемлемых 2 атмосфер). Ввиду кризисной ситуации выбран недорогой китайский насос из Леруа мощностью всего 190 Вт, зато работает тихо и обеспечивает необходимое давление. В качестве резервуара воды (для компенсации отсутствия воды в неполивные часы) используется пластиковая бочка 227 литров. Нагреватель используется накопительный на 85 литров. В качестве фильтров задействованы две колбы: механическая очистка с ячейкой 5 мкм и угольный для устранения органических примесей. На выходе централизованного водопровода стоит сетчатый фильтр (грязевой) механической очистки. В системе предусмотрено множество шаровых кранов для удобного обслуживания и слива воды на зимний период. Для набора воды в емкость принято решение использовать унитазный поплавковый клапан, ввиду его надежности и неприхотливости к электричеству (при отсутствии электричества и наличии воды в центральном водопроводе - емкость все равно будет набрана и помыться вполне получится). На входе насоса установлен обратный клапан, который необходим для его правильной работы. Для индикации количества воды в емкости и режима работы системы запланировано использовать трехцветный светодиод. Для возможности отключения насоса принято решение задействовать твердотельное реле. Отключение возможно в 3-х случаях: по таймеру (насос работает нехарактерно долго, что является косвенным признаком обрыва трубы или шланга), по достижению низкого уровня в бочке (чтобы защитить насос от сухого хода) и при обнаружении протечки в наиболее уязвимых местах.
Далее будет описание процесса реализации. В Леруа выбрана подходящая новенькая бочка:




Сверху лежит новенький поплавковый клапан унитазного типа, причем современные отличаются низким уровнем шума (за это приходится платить низкой скоростью набора воды), поэтому выбран был олдскульный (с реальным гвоздем для крепления подвижной части) - такие еще продаются в магазинах.

Для определения количества воды в емкости было решено использовать поплавковые герконовые датчики. Да, в тот момент у меня еще не было бесконтактных датчиков из , поэтому пришлось дырявить бочку в 3-х местах. Датчики брал . Принцип их работы простой - на стержне движется поплавковая часть с магнитом, когда вода поднимает поплавок - контакт замыкается. Датчики комплектуются силиконовой прокладкой, но все равно требуется место стыковки обработать санитарным силиконовым герметиком перед скручиванием, иначе возможны сюрпризы в виде протечек. Эти датчики себя хорошо зарекомендовали.


На санитарный силиконовый герметик также посадил унитазный механизм:


В крышку бочки вставляем шланг забора воды и шланг забора воздуха (совместно этот шланг будет использоваться для защиты чердака бани от перелива при отказе унитазного механизма), отверстия вокруг шланга герметизируем, результат:


Далее необходимо припаять провода к датчикам и упорядочить все соединения (на этом этапе было задействовано 2 датчика). Зачищаем провода удобным стриппером для тонких проводов:


Для возможности демонтажа бочки ставим автомобильные клеммы на провода:




Припаиваем провода к датчикам, предварительно надев термоусадку как на отдельные проводки, так и на весь провод (ШВВП 2х0.5):


Использовал флюс ЛТИ-120


Закрываем темоусадкой пайку:


Паял газовым паяльником, удобно при мобильных работах, им же усаживал термоусадку. Итог:


Клеим крепления проводов на бочку:


Итог:


Вид изнутри:


Проверяем работу датчиков:




Бочка готова:


Готовим подключение шланга к насосу. Для соединения труб использовал отечественный анаэробный герметик Сантехмастергель от «Регион Спецтехно». Обзор этого замечательного герметика я делал :


Салфеткой удаляем излишки:


Итог:


Кран на входе насоса позволит заполнять шланг водой при запуске насоса весной.

В качестве контроллера я использовал свою платку, в основе которой используется arduino pro mini, с от 220 В:




вот ее фотовид из программы Sprint Layout:



Платка простая, обеспечивает питание контроллеру, удобный вывод пинов и возможность подключения сетевого модуля. Также плата содержит передатчик 433 МГц и может передавать свое состояние внешним устройствам.

Пишем нехитрый код по реализации пунктов из задания (отслеживание времени работы насоса, определение уровня воды в бочке и индикацию состояний, также обеспечиваем возможность отключения насоса). Процесс отладки:





Итоговая схема работы:


Для коммутации используется симистор, с помощью оптической пары распознается состояние насоса. S1, S2, S3 - датчики уровня воды в бочке. LED3, LED4, LED5 - это один трехцветный светодиод с общим катодом, используется только один токоограничивающий резистор в катоде, так как не допускается логикой работы одновременное свечение нескольких цветов.

Монтаж начался с душевой системы:

Далее снаружи бани монтируются трубы. Выбраны пропиленовые трубы из-за удобства монтажа и долговечности. Фильтры вынесены на улицу для удобной замены картриджей - на чердак стационарная лестница отсутствует:

Подключение к водопроводу:


Первое заполнение бочки:


Тестовый монтаж контроллера:


Вид сверху:


Для критиков повторюсь, что помещение чердака никак не используется, поэтому делалось больше с точки зрения удобства монтажа. Реле я поместил в отдельную коробку.

Трубы заведены в дом:


Красное - утеплитель горячей воды.
Далее траншея засыпана:


Кран на кухне:

После пробной эксплуатации было принято несколько поправочных решений:
- установлен еще один датчик уровня воды в бочке (средний), соответственно, изменена индикация
- из-за частого включения насоса был приобретен гидроаккумулятор

Индикатор работает следующим образом: мигает синим при полной бочке, горит синим если количество воды превышает половину, горит зеленым при количестве воды меньше половины, горит красным при достижении нижнего датчика и мигает красным в аварийных случаях.

Так как гидроаккумулятор требовалось установить без долгого перерыва в работе, использовал герметизирующую синтетическую нить Sprint от «Регион Спецтехно» из :

Спасибо тем кто дочитал до конца! Надеюсь быть полезным! Добавить в избранное Понравилось +119 +256

Кто-то выращивает овощи в теплице больше ради самого процесса: приятно своими руками что-то создавать, наблюдать, как растут первые помидоры и перцы, удобрять, лечить, собирать и хвастать перед соседями. А вот многие с удовольствием бы занялись вплотную подобным хозяйством, вот только ни сил, ни времени для этого нет. И только мечта подсказывает: вот бы такую конструкцию, в которой все растет само: поливается, удобряется, согревается и проветривается, когда нужно… На самом деле, такие «умные» теплицы уже существуют: благодаря активному развитию технологий и строительного рынка абсолютно все, начиная от искусственного пруда и заканчивая огромными тепличными комплексами, можно автоматизировать. Как? Самый простой путь – это приобрести всякие там регуляторы влажности, системы капельного полива, теплый пол с термодатчиком, автоматические открыватели для форточек и пульт дистанционного управления ко всей этой красоте.

Правда, затраты на такие системы могут не окупиться свежими овощами даже за десять лет (приверженцы жизни в стиле «эко» тут же поспорили бы, приведя массу аргументов в сторону здорового и экологичного питания). Но тогда почему бы не воспользоваться опытом умных огородников, у которых автоматика для теплиц своими руками создается и исключительно подручными средствами. Как? И что все-таки лучше: покупные дорогие системы или домашние методы? Вот сейчас во всем этом и разберемся. Скажем только: делать теплицу «умной» нужно с умом!

Новинок каждый год выходит очень много, это видео с последней выставки новшеств тому доказательство:

К чему теплице автоматизация?

Давайте рассмотрим подробнее, что же происходит в конструкции, которая «не умная». Т.е. попросту которой не ведома автоматика для теплиц и контроль за ее микроклиматом ведется по возможности, хотя и фактически каждый день.

Рано утром, как только первые солнечные лучи попадают в теплицу, температура в последней начинает достаточно быстро повышаться – и чем выше по высоте, тем быстрее. Для растений это – хорошо. Вот только есть проблема: перепад температур в это время между почвой и воздухом достигает порой разницы в 30°С! Корни остаются еще холодными, тогда как верхушки растений уже разогрелись. И происходит вот что: более «холодная» подземная часть плохо снабжает более «теплую» верхнюю часть растений, что приводит к элементарному дефициту влаги. Что на самом деле для растений все-таки не есть хорошо.

Еще больший стресс растения испытывают в жару в такой теплице. Ведь обычно хозяева идут собственноручно открывать форточки и двери уже тогда, когда температура внутри достигает 40°С. Влажность воздуха при этом резко падает, растения начинают испытывать засуху. И что происходит дальше? Еще хуже – двери и форточки резко открывают, и образовавшийся сквозняк уносит остатки и так не достающей влаги. Просто-таки как в пустыне! Молодые побеги от этого теряют тургор – давление внутри клеток, вянут, а цветы и завязи и вовсе отпадают. А вот вредители, особенно паутинный клещ, от жары и сухости начинают чувствовать себя как раз хорошо.

Вечером растения, конечно же, начнут приходить в себя. Но в итоге, собирая урожай, вы не сможете не отметить, насколько он меньше и хилее того, что у соседа с частично или полностью автоматической теплицей. То есть задача «умной» теплицы – это максимально поддерживать комфортный климатический режим для растений в теплице: влажность, температуру, насыщенность кислородом и влагой.

Автоматизируем по последнему слову техники

Что же нам сегодня предлагает последнее слово техники?

Автоматический полив

Так, одна из самых недорогих систем капельного полива – знаменитая Аквадуся. Это бочка на 200 литров, в которую подведена вода через арматуру сливного бочка. Хватает такого объема жидкости примерно на 4-5 поливов – идеально для тех, кто теплицу видит раз в неделю, приезжая на дачу. Не менее популярна в России система капельного полива с израильскими капельницами – они якобы и прочнее, и более устойчивы к напору.

Открываем форточки термоприводом

Неспроста опытные огородники уверены, что жара – куда большее зло для тепличных растений, чем холод. А потому автоматизация теплиц в плане проветривания необходима даже тогда, когда вы имеете возможность и желание проверять внутреннюю температуру теплицы хоть каждый день.

А вот при понижении температуры масло, охлаждаясь, сжимается, и закрывается под собственной тяжестью. А отрегулировать после заправки масла ваш термопривод можно так:

  1. Откройте кран и проследите, чтобы бутылка стояла вертикально вверх – чтобы воздух в систему не попал.
  2. Дождитесь нужной температуры в теплице и перекройте кран.
  3. Форточки оставьте закрытыми – чтобы система не завоздушилась.

Как видите, ничего сложного!

Автоконтроль влажности – почему это так важно?

На самом деле переизбыток влажности даже для тепличных растений не к добру – от этого они могут начать болеть. Существует свой порог этого значения, придерживаться которого вам помогут различные автоматические устройства.

Современный рынок предлагает самые разные модели подобной техники, которые способны задавать и верхний, и нижний пороги относительной влажности в закрытом грунте. По сути, большинство из них просто подает влагу в грунт – при сухости воздуха увеличивает подачи, а при достижении верхнего порога и вовсе ее прекращает. Запомните, теоретически норма для тепличных растений – это 65-70%.

Можно связать с системами автополива и датчик влажности почвы – как только она насытится, подача воды будет автоматически прекращена. А устанавливают этот датчик прямо в землю, рядом с растениями и их корневой системой.

Автоматизируем по-хитрому и домашними средствами

Давайте посмотрим, как можно обеспечить тот же автополив растениям подручными средствами:

Способ №1. Солнечная дистиляцция

Это – очень простой способ автополива, который дает достаточно влаги для растений даже в самые жаркие дни. Суть этого принципа – в солнечной дистилляции – когда вода греется до выделения пара, а этот пар потом конденсируется в воду.

Итак, берем две пластиковые бутылки разного размера, в одну из них наливаем воду, а вторую используем как колпак для нее. Когда вода от солнца будет испаряться, пар осядет на стенках колпака. Такой конденсат хорошо увлажняет грунт, и чем более палит солнце, тем больше влаги получат растения.

Способ №2. Стержень от ручки

Самые простые и бесплатные устройства для капельного полива вы можете сделать из обычных пластиковых бутылок и стержней от старых шариковых авторучек. Стержни промойте бензином от пасты и один конец плотно закройте деревянной палочкой. Швейной иглой проколите отверстие на 3-4 мм от заглушки. В бутылке тоже проколите отверстие – только чуть меньше диаметром, чем у стержня.

И ставьте бутылки так:

  • Вариант 1. Отрежьте у бутылки дно, а отверстие для стержня сделайте на уровне плечиков. Горлышко закройте пробкой и поставьте бутылку вверх дном.
  • Вариант 2. Сделайте отверстие на расстоянии 20-25 мм от самого дна, пробку снимите, а бутылку поставьте на дно. Отверстие уплотните пластилином.

Вот и все. Налейте воду и смотрите, как она капает из стержня – в норме за 5 минут должно вытечь 10 капель.

Как вы заметили, автополив и контроль за влажностью организовать и правда непроблематично, а вот с проветриванием придется повозиться. Самый надежный и простой вариант – купить автооткрыватели для форточек. Но, при желании, вы можете сделать такие и сами. Для этого посмотрите на нашем сайте статьи на такую тематику: . Но суть всех этих конструкций одна: масло или другая какая жидкость в них расширяется от повышения температуры и выталкивает поршень. Он, в свою очередь, оказывает давление на следующий элемент конструкции и форточка медленно начинает открываться. Любопытный момент: когда в «умной» теплице едва начинают подниматься фрамуги, соседи счастливого обладателя тоже начинают бежать к своим теплицам делать проветривание. Вот такой себе датчик для окружающих.

Конечно, ни одна автоматическая теплица не будет делать на все 100% за вас вашу работу, но все-таки максимально освободиться от рутины и «танцев с бубном», как любят говорить сегодня русские мастера, - это приятно. И это дополнительное время на новые эксперименты!

Сергей Степаненко
п.Арти, Свердловская обл.

Устройства, построенные на микроконтроллерах популярных недорогих серий, в настоящее время получают все большее распространение. И это не случайно. Дело в том, что их высокие функциональные возможности довольно удачно сочетаются с невысокой стоимостью и конструктивной простотой. К этой серии можно отнести и устройство, которое совсем нетрудно собрать из набора , даже имея только лишь начальные навыки радиолюбительства. Готовая конструкция представляет собой универсальный микропроцессорный блок управления, способный работать в режиме термостата или таймера и, при этом, коммутировать до четырех независимых нагрузок одновременно. Помимо прочего, в устройстве NM8036 реализован режим будильника. Общий вид готового устройства управления представлен на рис.1.

Рис.1. Общий вид устройства NM8036.

Правильно собранное устройство NM8036 имеет следующие технические характеристики:

  • Напряжение питания, В: 9…15;
  • Потребляемый ток, мА: <200;
  • Каналы управления: 4 оптоизолированных выхода для управление мощными симисторами с током управления до 1 А или 4 логических выхода, с выходным током до 10 мА;
  • Часы реального времени: полный календарь;
  • Индикация: текстовый LCD 16*2;
  • Звуковая индикация: микро-динамик;
  • Программирование таймера с дискретностью, сек: 1;
  • Максимальное количество шагов программы: 32;
  • Диапазон температур термометра-терморегулятора, о С: -55…+125;
  • Разрешающая способность термостатирования, о С: 0,1;
  • Связь с персональным компьютером: RS232(СОМ - порт);
  • Тип литиевой батареи резервного питания: CR2032 (3 В);
  • Время работы часов от резервной батареи при отключении основного источника напряжения: 1 год;
  • Размеры печатных плат, мм: основная плата – 125х82, плата клавиатуры – 125х24.

На базе такого устройства управления можно без труда реализовать систему управления и контроля как у вас в квартире, так и на даче или же применить устройство в собственных разработках. В рамках этой статьи предлагается вариант использования 4-х канального микропроцессорного устройства для автоматизации вашего тепличного хозяйства.

Автоматизация вашей дачной теплицы

Для этой цели устройство управления подходит, практически, идеально. Сейчас многие садоводы, не только профессионалы, но и любители предпочитают содержать на своем приусадебном участке собственное тепличное хозяйство. Да это и понятно. Ухаживая за произрастающими в теплице культурами, человек получает не только моральное удовлетворение и отдых от суеты мирской, а еще овощи, фрукты и зелень к столу, практически, круглый год. Вместе с тем, каждый садовод, конечно же, знает, что для хорошего роста культур немаловажной задачей будет являться поддержание оптимальной температуры в теплице. Практически это оказывается чрезвычайно трудно, поскольку ее круглосуточный контроль невозможен без специального оборудования в силу понятных причин.

Неплохим решением подобной проблемы может быть использование 4-х канального микропроцессорного устройства управления NM8036. Именно с его помощью садовод может организовать круглосуточное поддержание оптимальной температуры в своей теплице. Для этого, прежде всего, конструкцию необходимо правильно собрать и настроить. Информацию о том, как правильно это сделать, можно найти, зайдя на сайт.

Для начала, обе собранные печатные платы устройства управления было бы разумным установить в корпус , который можно приобрести отдельно. В этих целях вам необходимо будет самостоятельно прорезать в нем несложные отверстия для индикатора, кнопок и разъемов. Платы крепятся в корпус винтами, которые входят в комплект корпуса FB-04. Общий вид печатных плат показан на рис.2.

Рис.2. Так выглядят печатные платы 4-х канального микропроцессорного устройства управления.

Для удобства подключения питающего напряжения и датчиков температуры на печатной плате устройства управления предусмотрены разъемы XS2 и XS3 соответственно.

Когда блок управления собран и работоспособен, можно непосредственно приступить к построению самой системы управления теплицей.

Прежде всего, вам необходимо определить место для размещения блока управления (он показан на рис.1). Его расположение должно быть таким, чтобы обеспечить не только свободный обзор текстового индикатора, но и доступ к кнопкам управления.

Затем нужно правильно выбрать место установки термодатчика DS18B20. Именно от его в большей мере будет зависеть точность поддержания заданной температуры в теплице. Лучше всего датчик разместить подальше от стен. После того, как датчик надежно закреплен, его подключают к блоку управления шлейфом через разъем XS3. Как правильно это сделать, иллюстрирует рис.3.

Рис.3. Подключение термодатчиков DS18B20 к блоку управления.

Теперь можно к блоку управления подсоединить и обогревательное оборудование. Однако тут есть некоторая особенность, на которую вам обязательно нужно обратить внимание. Дело в том, что все силовые выходы устройства NM8036, подключенные к разъемным контактам XS5-XS12, рассчитаны на максимальный ток 1 А. Если суммарный потребляемый ток ваших тепличных обогревателей превосходит это значение, конструкцию устройства управления необходимо немного доработать. Проще всего это сделать, если к используемым выходам XS5-XS12 подключить мощные силовые симисторы (в комплект набора NM8036 не входят) по схеме, приведенной на рис.4.

Рис.4. Способ подключения силовых симисторов.

В схеме можно применять симисторы с током включения не более 1 А в пике. Ток постоянной нагрузки при этом не должен превышать 100 мА. Для такой цели хорошо подойдут симисторы MAC223-MAC224 или BT134-BT139 в зависимости от мощности подключаемой нагрузки (см. табл.1). Если мощность нагрузки превышает 500 Вт, то симисторы требуется установить на радиатор, площадь которого должна обеспечить достаточный отвод тепла от корпуса прибора.

Таблица 1. Применение дополнительных симисторов для подключения мощной нагрузки.

Поскольку в устройстве NM8036 реализована возможность установки одного и того же датчика на несколько каналов управления, можно подключить часть обогревателей к другим выходным каналам, используя дополнительные симисторы, что даст повышение надежности работы силовой части конструкции за счет перераспределения суммарного тока нагрузки по другим каналам устройства управления. На этом установку «железа» для вашей системы управления теплицей можно считать оконченной. Но для нормальной работы термостата этого пока недостаточно. Его еще необходимо запрограммировать, иными словами, проделать ряд действий, предписывающих микропроцессорному устройству термостата, как действовать при определенных условиях и по какому алгоритму. Эти действия представляют собой, своего рода, «обучение» нашего «железа».

Убедившись, что все подключения сделаны верно, подайте напряжение питания на схему устройства управления через гнездо XS2. На индикаторе правильно настроенного блока управления вы должны будете увидеть поочередное переключение между режимами вывода времени (с полной датой) и выводом температур на все 4 канала. Оба режима показаны на рис.5.

Рис.5. Отображение информации на экране блока управления.

Начать программировать термостат следует, зайдя в меню блока управления. Для этого вам нужно нажать на кнопку «Меню». При этом становятся доступными следующие режимы: «Установка часов», «Программа», «Поиск датчиков», «Параметры», «Подсветка» и «Контрастность». Навигация осуществляется клавишами «вверх»/«вниз», а клавиша «ввод» позволяет изменять и запоминать соответствующие параметры для данного пункта меню. На рис.6 показана индикация этих режимов:

Рис.6. Индикация режимов работы устройства управления.

«Обучение» термостата начинается с предварительной установки текущего времени, для чего вам необходимо зайти в режим «Установка часов». Затем можно перейти и к непосредственной инициализации (обнаружению) температурного датчика DS18B20. С этой целью вам следует выбрать режим «Поиск датчиков». При входе в данное подменю происходит задержка на несколько секунд, поскольку микроконтроллер производит поиск всех датчиков, подключенных к шине.

Если вы правильно подключили термодатчик DS18B20 к блоку управления, то датчик будет найден устройством, а на экране индикатора появится информация о нем:

Рис.7. Отображение информации на экране устройства управления о текущем состоянии температурного датчика.

Далее стрелками «влево»/«вправо» производится выбор выходного канала, а стрелками «вверх»/«вниз» производится выбор термодатчика для данного канала. Нажатием на «ввод» вы осуществляете запоминание определенного датчика для выбранного канала. Повторное нажатие «ввод» позволяет вам удалить настройки датчика из памяти на данный канал. Как уже было упомянуто выше, при программировании датчиков предусмотрена возможность установки одного и того же датчика на несколько выходных каналов управления.

Для удобства пользователя в 4-х канальном микропроцессорном устройстве управления организована энергонезависимая память, позволяющая сохранять все настройки даже при отключении питания на длительное время. Кроме того, при отключении датчиков или подключении новых датчиков не будет происходить смещение нумерации и «путаница», так как их запоминание и присвоение к каналам происходит на уровне серийных номеров.

После определения термодатчика и программирования его на работу по выбранному вами каналу, остается задать необходимые условия работы термостата, то есть, научить его работать так, как вам нужно. Для этого в основном меню вам надо зайти в подменю «Программа» (см. рис.6). На экране индикатора появится примерно следующее:

Рис.8. Экран индикатора устройства управления в режиме «Программа».

При входе в это меню стрелками «вверх»/«вниз» производится выбор канала программы, а при нажатии на кнопку «ввод» происходит вход в режим установки выбранной записи программы управления.

При первом «вводе» происходит вход в установку времени включения нагрузки, а при следующем - переход на установку отключения нагрузки. Этот режим в данном случае для нас не представляет интереса, поскольку включение-выключение нагрузки (тепличных нагревателей) происходит только в зависимости от температуры.

При последующем нажатии на кнопку «ввод» вам нужно выбрать номер канала управления, а также один из четырех режимов (охладитель/нагреватель/без нагрузки/будильник) и установка температур на включение и отключение нагрузки. Выбираем режим «Нагреватель» (на экране появляется кружок) и выставляем максимальную и минимальную температуры. Интервал между этими двумя значениями и будет являться заданным оптимальным диапазоном температур, который устройство управления будет выдерживать внутри теплицы с высокой точностью.

Последним шагом программирования устройства управления является установка времени действия режима термостатирования. Для этого достаточно выставить время действия с 2000 по 2099 год. Система контроля температуры в вашей теплице настроена и готова к работе.

Возможные варианты модернизации системы контроля температуры

Помимо основной функции, такой, как поддержание оптимальной температуры, можно без труда заставить устройство управления NM8036 обеспечивать полив произрастающих в теплице культур строго в соответствии с заданным вами графиком. Для этого, прежде всего, вам будет необходимо выбрать один из свободных каналов управления, а затем «обучить» устройство управлять подключенной к выбранному каналу нагрузкой, в качестве которой может быть электромагнитный клапан, отвечающий за подачу воды в систему полива.

Чтобы реализовать вышесказанное, потребуется зайти в меню выбора режимов, нажав на кнопку «Меню». Вам откроется уже знакомая картинка (см. рис.6). Выбирайте кнопками «вверх»/«вниз» режим программирования, после чего жмите на кнопку «ввод». На индикаторе появляется картинка, также знакомая вам (рис.8). Теперь можно непосредственно приступить к программированию таймера, который будет управлять клапаном подачи воды.

С помощью кнопок «вверх»/«вниз» вам потребуется найти свободный канал, к которому вы в дальнейшем подключите клапан и нажать на кнопку «ввод». Номер канала запоминается в памяти устройства.

Далее необходимо ввести время старта, например, 14:00:00, а затем, после повторного нажатия на «ввод», время останова 14:30:00. Далее устанавливаются дата, месяц и год. Дальнейшее нажатие на «ввод» позволит вам выбрать типа управления. В этом пункте меню устанавливаем символ «крестик» и номер канала, к примеру, «4», после чего снова жмем «ввод». Появляется меню срабатывания по периоду. Поскольку полив в теплице нужно производить либо каждый день, либо по строго определенным дням на неделе, выберите периодичность срабатывания таймера: «по определенным дням недели» и отметьте те дни, когда должен осуществляться полив. Чтобы возвратиться в предыдущее меню, вам следует нажать клавишу «Меню».

Итак, вы запрограммировали устройство управления на периодический полив по заданным дням недели с 14-00 ч. До 14-30 ч. Остается лишь подключить электромагнитный клапан к выбранному вами при программировании каналу управления. Система «Термостат - автоматический полив» готова к работе!

И последний момент. Устройство управления NM8036, как вы уже, наверно, поняли, изучив его технические характеристики, приведенные в начале этой статьи, имеет возможность подключения к персональному компьютеру посредством разъема XS1, расположенным на основной плате, через последовательный СОМ-порт ПК. Такая особенность может успешно использоваться вами для контроля за работой устройства управления на расстоянии. В целях реализации подобной идеи вам потребуется спаять кабель связи. Приобретите в любом радиомагазине две розетки типа DB9F и изготовьте кабель связи необходимой длины. Схема распайки кабеля приведена на рис.9.

Рис.9. Способ распайки соединительного кабеля с компьютером.

При использовании 4-х канального микропроцессорного устройства управления очень важным может оказаться то, что оно поддерживает полный календарь, что позволяет управлять нагрузками на времена до нескольких лет с точностью включения и отключения +/-1секунда. Разрешающая способность измерения температуры устройством составляет 0,1 градуса Цельсия, а точность соответствует заявленной точности на датчики Dallas и равна 0,5 градуса Цельсия.

Готовится к выпуску блок BM8036 – «8-ми канальный микропроцессорный таймер, термостат, часы». Данная разработка является аналогом набора . Её основные отличия: наличие восьми каналов управления, 8-ми каналов независимых нагрузок (2 А, 220 В) и законченное конструктивное исполнение. Примеры практического использования устройства приведены на рис.10.

Рис.10. Примеры практического использования блока BM8036 на даче.

Ручной полив участка со временем превращается в обременяющую задачу, выполнять которую хочется все меньше и меньше. Решить проблему поможет автоматическое либо автоматизированное орошение. С проектированием системы и монтажом всех ее составляющих можно справиться собственными силами. Как? Читайте далее.

Мы приводим инструкции по монтажу двух систем полива: масштабной автоматической с использованием программируемого контроллера и скромной неавтоматизированной, обустроенной на основе бочки.

Прежде чем приступать к обустройству любой из двух рассматриваемых систем, нужно выбрать источник воды и подходящее для конкретной ситуации насосное оборудование. Воду можно брать из:


Таблица. Насос Малыш, используемый для перекачки воды из открытых водоемов, колодцев и скважин. Характеристики

Насос Малыш, характеристики Показатели
Тип насоса Бытовой вибрационный погружной
Сила потребляемого тока 3 А
Мощность 165 Вт
Забор воды Нижний
Напор 40 м
Производительность 432 л/мин
Длина кабеля 10-40 м
Непрерывная работа Не более 12 часов подряд
Необходимость отключения питания на 15-20 минут Через каждые 2 часа
Подклключение К гибкому шлангу

Делаем полноценный автоматический полив

Чертим план

Начнем с оформления плана участка. В масштабе обозначим на нем основные элементы нашей усадьбы: дом, веранду, подъезд, уличную печь и т.д. – так мы сможем определить допустимую площадь действия дождевателей.

На схеме отмечаем точку водозабора. В случае если источников воды несколько и они расположены в разных местах участка, выбираем кран, находящийся примерно посередине. В такой ситуации мы сможем обеспечить приблизительно равную длину линий полива

Выбираем метод орошения

В рассматриваемом примере система обустраивается для полива большого газона и нескольких грядок, а также участка с кустарниками и деревьями. Вы же можете корректировать планировку с учетом особенностей вашего участка.

Часть с газоном и клумбами будем поливать с помощью выдвижных дождевателей. При включении они поднимаются над поверхностью, а после завершения полива опускаются и становятся практически незаметными.

Для второй части нашего участка подобный вариант орошения не подходит: насаждения слишком высокие, а ширина участка небольшая.

Важное замечание! Использовать дождеватели для полива участков, ширина которых составляет менее 2 м, не рекомендуется. Такие устройства имеют слишком большой радиус действия, что может доставить ряд неудобств.

Для полива этой части насаждений мы укладываем капельную линию. Она представляет собой трубу необходимой длины с отверстиями, обустроенными по всей протяженности. Такую трубу можно закопать либо попросту уложить между грядками.

Составляем схему полива

Отмечаем на плане нашего участка точки установки дождевателей и радиусы их покрытия. Придерживаемся такого порядка проектирования:

  • по углам участка устанавливаем дождеватели для полива на 90 градусов;
  • вдоль границ территории устанавливаем устройства, орошающие пространство на 180 градусов вокруг себя;
  • по углам участка возле различных зданий и построек устанавливаем дождеватели на 270 градусов;
  • по площади устанавливаем устройства, поливающие на 360 градусов.

Количество дождевателей подбираем так, чтобы радиусы покрытия устанавливаемых рядом приборов пересекались. При таком размещении устройств ни одно растение не будет обделено влагой. Однако этот метод актуален только для больших участков, имеющих правильную форму.

В нашем примере площадь участка сравнительно небольшая, при этом он имеет узкую полосу вдоль жилого дома. Поэтому мы составляем проект в следующем порядке:

  • сначала отмечаем места установки дождевателей, имеющих наибольший радиус действия. Их мы будем использовать для полива основной части сада;
  • по узкой стороне участка отмечаем места для дождевателей с более скромным радиусом орошения;
  • в местах, куда не достают дождеватели, планируем укладку капельной линии.

Важно! Перепроверьте проект. Убедитесь, что все насаждения будут получать воду.

Проверяем водозабор на пропускную способность

Готовый план позволяет нам установить нужное количество дождевателей. Однако перед монтажом системы мы должны узнать, хватит ли производительности источника водоснабжения для эффективного обслуживания обустраиваемой системы. Делаем это следующим образом:


Теперь определяем, сможет ли водозабор обеспечивать одновременную работу всех запланированных линий полива. Потребность дождевателей остается одинаковой и определяется в соответствии с площадью их покрытия. В нашем примере мы устанавливаем:

  • устройства на 180 градусов с площадью покрытия до 200 м 2 — 2 штуки. Потребность каждого прибора в воде составляет 12, в сумме – 24;
  • дождеватели на 270 градусов с площадью покрытия до 200 м 2 – 2 штуки. Потребность каждого составляет 14, итого – 28;
  • устройство на 180 градусов с покрытием до 50 м 2 – 1 штука. Потребность – 7;
  • прибор на 270 градусов с покрытием до 50 м 2 – 1. Потребность – 9;
  • дождеватель на 90 градусов с площадью покрытия до 50 м 2 – 1. Потребность в воде – 6.

В сумме потребность наших оросительных устройств в воде составляет 74. Водозабор способен выдать только 60. Подключить все устройства к одной линии для одновременного использования не удастся. Для решения проблемы делаем две линии дождевателей. Одна будет использоваться для обслуживания больших устройств, другая – для маленьких.

Для капельного полива делаем третью линию. Она требует индивидуального управления, т.к. основные линии включаются примерно на полчаса каждые сутки, а капельные же должны работать не меньше 40-50 минут, в зависимости от особенностей грунта и потребностей насаждений.

Подключать капельную линию и дождеватели к общей линии нельзя. При подобном обустройстве системы будет либо слишком обильно поливаться участок, обслуживающийся дождевателями, либо же территория с капельным поливом не сможет получать жидкость в достаточном объеме.

Автоматизируем систему

Для регулирования работы системы устанавливаем программируемый контроллер. При помощи этого устройства мы сможем настроить время включения и выключения орошения. Для сохранности устройства его рекомендуется устанавливать в помещении, к примеру, в подвале.

Возле крана водоснабжения устанавливаем входную колонку для подсоединения системы, а также специальную монтажную коробку для размещения отсекающих клапанов по количеству линий полива. У нас их 3. Каждый клапан соединяем с контроллером с помощью двухжильного кабеля. От клапанов отводим по одной оросительной линии. Подобное обустройство системы позволит запрограммировать ее на включение каждой оросительной линии по отдельности.

Мы обустроили линии следующим образом:

  • одну отвели для питания больших дождевателей. Для изготовления самой линии использовали 19-миллиметровые трубы, для отводов к дождевателям – трубы 16-миллиметрового диаметра;
  • вторую пустили на маленькие дождеватели, обслуживающие площадь до 50 м 2 . Трубы использовали аналогичные;
  • третью линию выделили для капельного орошения. Для изготовления этой линии использовали 19-миллиметровую трубу. Далее мы подсоединили к ней специальную капельную трубу. Она выполнена в виде двух замкнутых петель. Конец капельной трубы мы подключили к питающей трубе.

Для повышения эффективности полива мы включили в состав системы датчик дождя. Он не позволит поливу включаться во время осадков. Датчик подключаем к контроллеру по прилагающейся инструкции. Непосредственно контроллеры в большинстве случаев включаются в обыкновенную розетку, что очень удобно.

Подключаем и настраиваем полив

Первый шаг. Размещаем на участке элементы полива и соединяем их между собой с помощью специальных соединителей и разветвителей. Следим, чтобы в трубы не попадала земля.

Конструкция соединителей очень проста — с работой легко справится даже женщина

Второй шаг. Подключаем собранную систему к водоснабжению и делаем пробный запуск. Выставляем дождеватели в нужных направлениях. Если все в порядке, переходим к выполнению земляных работ.

Третий шаг. Выкапываем по ходу трубопровода 200-250-миллиметровую канаву.

Четвертый шаг. Засыпаем дно траншеи слоем щебенки. Засыпка возьмет на себя функции дренажной подушки, обеспечивающей отведение остатков воды.

Пятый шаг.

Шестой шаг. Выполняем обратную засыпку траншеи.

Седьмой шаг. Включаем систему для проверки. Регулируем дождеватели.

Восьмой шаг. Программируем контроллер на включение и выключение орошения в необходимое время. Помним: линии должны работать поочередно, включать их одновременно можно только при достаточной пропускной способности водозабора.

Полив подключен и настроен. Можем принимать его в постоянную эксплуатацию. В будущем регулярно проверяем состояние и правильность работы элементов оросительной системы.

Бюджетный вариант полива

Нет необходимости в обустройстве масштабного автоматического полива? Тогда используйте простой бюджетный вариант на основе бочки.

Первый шаг

Делаем подставку для бочки. Используем профилированную трубу или швеллер. Оптимальная высота опоры – 1,5-2 м. Опорные стойки должны быть наклонены друг к другу под таким углом, чтобы размеры верхней рамы позволяли устойчиво уложить нашу бочку. Соединяем опоры горизонтальными перемычками внизу, посередине и вверху. Роем 70-80-сантиметровые ямы для установки опор, выставляем конструкцию, засыпаем 10-15 см высоты каждой ямы щебенкой и заливаем бетон. Важно! На время застывания бетона фиксируем опоры распорками.

Капельный полив — бак с водой

Второй шаг

Готовим емкость для воды. Подойдет любая целая и не ржавая бочка. В верхней части бочки врезаем патрубок для подключения шланга. Через него бочка будет наполняться водой. Второй конец данного шланга подключим к водозабору. В нижней части также обустраиваем патрубок. К нему подключаем шланг для полива. Оба шланга укомплектовываем кранами для включения-выключения подачи воды. Укладываем бочку на опору. Для большей надежности закрепляем ее с помощью хомутов, болтов и гаек.

Третий шаг

На плане участка указываем места, нуждающиеся в поливе. Чертим схему системы орошения с указанием всех разветвителей, соединителей, заглушек, кранов, труб, шлангов и прочих элементов.

Четвертый шаг

Собираем систему орошения. Самый простой и удобный вариант – купить готовый комплект для обустройства капельного полива. Также такую систему можно сделать самостоятельно. Для этого достаточно подготовить нужное количество труб или шлангов, проделать по их длине отверстия, соединить элементы в единую систему с помощью соединителей и разветвителей, а затем выполнить подключение к шлангу, выходящему из бочки.

Как сделать систему капельного полива самому

Удачной работы!

Видео – Система полива своими руками