Способы адаптации растений. Способы распространения семян. Разноспоровость и неплавающие мужские гаметы

в биологии – развитие любого признака, который способствует выживанию вида и его размножению. Адаптации могут быть морфологическими, физиологическими или поведенческими.

Морфологические адаптации включают изменения формы или строения организма. Пример такой адаптации – твердый панцирь черепах, обеспечивающий защиту от хищных животных. Физиологические адаптации связаны с химическими процессами в организме. Так, запах цветка может служить для привлечения насекомых и тем самым способствовать опылению растения. Поведенческая адаптация связана с определенным аспектом жизнедеятельности животного. Типичный пример – зимний сон у медведя. Большинство адаптаций представляет собой сочетание перечисленных типов. Например, кровососание у комаров обеспечивается сложной комбинацией таких адаптаций, как развитие специализированных частей ротового аппарата, приспособленных к сосанию, формирование поискового поведения для нахождения животного-жертвы, а также выработка слюнными железами специальных секретов, которые предотвращают свертывание высасываемой крови.

Все растения и животные постоянно адаптируются к окружающей среде. Чтобы понять, как это происходит, необходимо рассматривать не только животное или растение в целом, но и генетическую основу адаптации.

Генетическая основа. У каждого вида программа развития признаков заложена в генетическом материале. Материал и закодированная в нем программа передаются от одного поколения другому, оставаясь относительно неизменными, благодаря чему представители того или иного вида выглядят и ведут себя почти одинаково. Однако в популяции организмов любого вида всегда присутствуют небольшие изменения генетического материала и, следовательно, вариации признаков отдельных особей. Именно из этих разнообразных генетических вариаций процесс приспособления отбирает те признаки или благоприятствует развитию таких признаков, которые в наибольшей степени увеличивают шансы на выживание и тем самым на сохранение генетического материала. Адаптация, таким образом, может рассматриваться как процесс, посредством которого генетический материал повышает свои шансы на сохранение в последующих поколениях. С этой точки зрения, каждый вид олицетворяет собой успешный способ сохранения определенного генетического материала.

Чтобы передать генетический материал, особь любого вида должна иметь возможность питаться, дожить до периода размножения, оставить потомство и затем распространить его на возможно большей территории.

Питание. Все растения и животные должны получать из окружающей среды энергию и различные вещества, прежде всего кислород, воду и неорганические соединения. Почти все растения используют энергию Солнца, трансформируя ее в процессе фотосинтеза (см. также ФОТОСИНТЕЗ) . Животные получают энергию, питаясь растениями или другими животными.

Каждый вид определенным образом приспособлен к тому, чтобы обеспечивать себя питанием. Ястребы имеют острые когти для захватывания добычи, а расположение глаз в передней части головы позволяет им оценить глубину пространства, что необходимо для охоты при полете на большой скорости. У других птиц, например цапель, развились длинные шея и ноги. Они добывают пищу, осторожно бродя по мелководью и подстерегая зазевавшихся водных животных. Дарвиновы вьюрки – группа близкородственных видов птиц с Галапагосских островов – представляют классический пример высокоспециализированной адаптации к разным способам питания. Благодаря тем или иным адаптивным морфологическим изменениям, в первую очередь в строении клюва, одни виды стали зерноядными, другие – насекомоядными.

Если обратиться к рыбам, то хищники, например акулы и барракуды, имеют острые зубы для поимки добычи. Другие, например мелкие анчоусы и сельди, добывают мелкие частицы пищи путем фильтрации морской воды через гребневидные жаберные тычинки.

У млекопитающих прекрасным примером адаптации к типу питания служат особенности строения зубов. Клыки и коренные зубы у леопардов и других кошачьих исключительно остры, что позволяет этим животным удерживать и разрывать тело жертвы. У оленей, лошадей, антилоп и других пастбищных животных большие коренные зубы имеют широкие ребристые поверхности, приспособленные для пережевывания травы и иной растительной пищи.

Разнообразные способы получения питательных веществ можно наблюдать не только у животных, но и у растений. Многие из них, в первую очередь бобовые – горох, клевер и другие – развили симбиотические, т.е. взаимовыгодные, отношения с бактериями: бактерии переводят атмосферный азот в химическую форму, доступную для растений, а растения предоставляют бактериям энергию. Насекомоядные растения, такие, как саррацения и росянка, получают азот из тел насекомых, пойманных ловчими листьями.

Защита. Окружающая среда состоит из живых и неживых компонентов. Живое окружение любого вида включает животных, питающихся особями этого вида. Адаптации хищных видов направлены на эффективную добычу пищи; виды-жертвы приспосабливаются, чтобы не стать добычей хищников.

Многие виды – потенциальные жертвы – имеют защитную или маскирующую окраску, которая скрывает их от хищников. Так, у некоторых видов оленей пятнистая шкура молодых особей незаметна на фоне чередующихся пятен света и тени, а зайцев-беляков трудно различить на фоне снежного покрова. Длинные тонкие тела насекомых-палочников тоже трудно увидеть, потому что они напоминают сучки или веточки кустов и деревьев.

У оленей, зайцев, кенгуру и многих других животных развились длинные ноги, позволяющие им убегать от хищников. Некоторые животные, например опоссумы и свиномордые ужи, даже выработали своеобразный способ поведения – имитацию смерти, которая повышает их шансы на выживание, поскольку многие хищники не едят падали.

Некоторые виды растений покрыты шипами или колючками, отпугивающими животных. Многие растения имеют отвратительный для животных вкус.

Факторы окружающей среды, в частности климатические, нередко ставят живые организмы в трудные условия. Например, животным и растениям часто приходится приспосабливаться к крайним значениям температуры. Животные спасаются от холода, используя изолирующий мех или перья, мигрируя в места с более теплым климатом или впадая в зимнюю спячку. Большинство растений переживает холода, переходя в состояние покоя, эквивалентное спячке у животных.

В жару охлаждение животного происходит за счет потоотделения или частого дыхания, увеличивающего испарение. Некоторые животные, в особенности пресмыкающиеся и земноводные, способны впадать в летнюю спячку, которая по сути аналогична зимней, но вызвана жарой, а не холодом. Другие просто ищут прохладное место.

Растения могут до некоторой степени поддерживать свою температуру, регулируя интенсивность испарения, которое имеет то же охлаждающее действие, что и потоотделение у животных.

Размножение. Критическим этапом в обеспечении непрерывности жизни является размножение – процесс, в ходе которого происходит передача генетического материала следующему поколению. Размножение имеет два важных аспекта: встречу разнополых особей для обмена генетическим материалом и выращивание потомства.

К числу адаптаций, обеспечивающих встречу особей разного пола, относится звуковая коммуникация. У некоторых видов большую роль в этом смысле играет обоняние. Например, котов сильно привлекает запах кошки в период течки. Многие насекомые выделяют т.н. аттрактанты – химические вещества, привлекающие особей противоположного пола. Запахи цветков являются эффективной адаптацией растений для привлечения насекомых-опылителей. Некоторые цветки сладко пахнут и привлекают питающихся нектаром пчел; другие пахнут отвратительно, привлекая мух, питающихся на падали.

Зрение тоже очень важно для встречи особей разного пола. У птиц брачное поведение самца, его пышные перья и яркая окраска привлекают самку и подготавливают ее к копуляции. Окраска цветка у растений часто указывает, какое животное необходимо для опыления этого растения. Например, цветки, опыляемые колибри, окрашены в красный цвет, который привлекает этих птиц.

Многие животные выработали способы защиты своего потомства в начальный период жизни. Большинство адаптаций такого рода относятся к поведенческим и включают такие действия одного или обоих родителей, которые повышают шансы на выживание детенышей. Большинство птиц строит гнезда, характерные для каждого вида. Однако некоторые виды, например воловья птица, откладывают яйца в гнезда других видов птиц и вверяют детенышей родительской заботе вида-хозяина. У многих птиц и млекопитающих, а также у некоторых рыб имеется период, когда один из родителей идет на большой риск, беря на себя функцию защиты потомства. Хотя такое поведение иногда грозит гибелью родителю, оно обеспечивает безопасность потомства и сохранение генетического материала.

Целый ряд видов животных и растений использует иную стратегию размножения: они производят на свет огромное число потомков и оставляют их незащищенными. В этом случае низкие шансы на выживание у отдельной подрастающей особи оказываются сбалансированы многочисленностью потомства. См. также РАЗМНОЖЕНИЕ.

Расселение. Большинство видов выработало механизмы для удаления потомства от тех мест, где оно появилось на свет. Этот процесс, называемый расселением, увеличивает вероятность того, что потомство будет подрастать на еще не занятой территории.

Большинство животных просто избегает мест, где слишком сильна конкуренция. Однако накапливаются свидетельства в пользу того, что расселение обусловлено генетическими механизмами.

Многие растения приспособились к распространению семян с помощью животных. Так, соплодия дурнишника имеют на поверхности крючочки, которыми они цепляются за шерсть проходящих мимо животных. Другие растения образуют вкусные мясистые плоды, например ягоды, которые поедаются животными; семена проходят через пищеварительный тракт и неповрежденными «высеваются» в другом месте. Для распространения растения используют и ветер. Например, ветром переносятся «пропеллеры» семян клена, а также семена ваточника, имеющие хохолки из тонких волосков. Степные растения типа перекати-поле, приобретающие к моменту созревания семян шарообразную форму, перегоняются ветром на большие расстояния, по пути рассеивая семена.

Выше были приведены лишь некоторые наиболее яркие примеры адаптаций. Однако практически каждый признак любого вида является результатом адаптации. Все эти признаки составляют гармоничную совокупность, что позволяет организму успешно вести свой особый образ жизни. Человек во всех его признаках, от структуры головного мозга до формы большого пальца на ноге, является результатом адаптации. Адаптивные признаки способствовали выживанию и размножению его предков, имевших те же самые признаки. В целом концепция адаптации имеет большое значение для всех направлений биологии. См. также НАСЛЕДСТВЕННОСТЬ.

ЛИТЕРАТУРА Левонтин Р.К. Адаптация . – В сб.: Эволюция. М., 1981

Половое размножение у семенных растений, к которым относятся цветковые и голосеменные, осуществляется с помощью семян. При этом обычно бывает важно, чтобы семена оказались на достаточно удаленном расстоянии от родительского растения. В этом случае больше шансов, что молодым растения не придется конкурировать за свет и воду как между собой, так и со взрослым растением.

Покрытосеменные (они же цветковые) растения в процессе эволюции растительного мира решили проблему распространения семян наиболее успешно. Они «изобрели» такой орган как плод.

Плоды служат приспособлением к определенному способу распространения семян. По-сути, чаще всего распространяются плоды, а семена вместе с ними. Поскольку способов распространения плодов достаточно много, то существует множество разновидностей плодов. Основными способами распространения плодов и семян являются следующие:

    с помощью ветра,

    животными (в том числе птицами и человеком),

    саморазбрасыванием,

    с помощью воды.

Плоды растений, которые распространяются ветром, имеют специальные приспособления, увеличивающие их площадь, но не увеличивающие их массу. Это различные пушистые волоски (например, плоды тополя и одуванчика) или крыловидные выросты (как у плодов клена). Благодаря таким образованиям, семена долго парят в воздухе, а ветер их относит всё дальше и дальше от родительского растения.

В степи и полупустыне нередко растения засыхают, и ветер обламывает их у корня. Перекатываемые ветром, засохшие растения рассыпают по местности свои семена. Таким «перекати-поле» растениям, можно сказать, не нужны даже плоды для распространения семян, так как с помощью ветра их распространяет само растение.

С помощью воды распространяются семена водных и околоводных растений. Плоды таких растений не тонут, а уносятся течением (например, у ольхи, растущей по берегам). Причем это не обязательно мелкие плоды. У кокосовой пальмы они крупные, но легкие, поэтому не тонут.

Приспособления плодов растений к распространению животными более разнообразные. Ведь животные, птицы и человек могут по-разному распространять плоды и семена.

Плоды некоторых покрытосеменных приспособлены к тому, чтобы цепляться за шерсть животных. Если, например, животное или человек пройдет рядом с репейником, то за него зацепится несколько колючих плодов. Рано или поздно животное их сбросит, но семена репейника окажутся уже относительно далеко от исходного места. Кроме репейника, примером растения с плодами-зацепками является череда. Ее плоды относятся к типу семянки. Однако у этих семянок есть маленькие шипы, покрытые зубчиками.

Сочные плоды позволяют растениям распространять их семена с помощью животных и птиц, которые поедают эти плоды. Но как же они их распространяют, если плод и семена вместе с ним съедены и переварены животным? Дело в том, что переваривается в основном сочная часть околоплодника плода, а вот семена - нет. Они выходят из пищеварительного тракта животного. Семена оказываются далеко от родительского растения и окружены пометом, который, как известно, неплохое удобрение. Поэтому сочный плод можно считать одним из самых успешных достижений эволюции живой природы.

Существенную роль в распространении семян сыграл человек. Так плоды и семена многих растений были случайно или намеренно завезены на другие континенты, где они смогли прижиться. В результате сейчас мы можем, например, наблюдать как в Америке растут растения, характерные для Африки, а в Африке - растения, родина которых Америка.

Существует вариант распространения семян с помощью разбрасывания, а точнее саморазбрасывания. Конечно, это не самых эффективный метод, так как семена оказываются всё-равно близко к материнскому растению. Однако такой способ нередко наблюдается в природе. Обычно разбрасывание семян характерно для плодов типа стручок, боб и коробочка. Когда боб или стручок засыхает, его створки скручиваются в разные стороны, и плод растрескивается. Из него с небольшой силой вылетают семена. Так распространяют свои семена горох, акация и другие бобовые.

Плод коробочка (например, у мака) колышется на ветру, и их него высыпаются семена.

Однако саморазбрасывание характерно не только для сухих семян. Например, у растения под названием бешеный огурец семена вылетают их сочного плода. В нем скапливается слизь, которая под давлением выбрасывается вместе с семенами.

Распространение растений по всей территории планеты – это процесс, который постоянно совершенствуется природой. Все растительные культуры, которые встречаются на Земле, обладают какими-то своими методами размножения, в которых могут участвовать прочие растения, животные, природные явления и пр. Некоторые способы распространения растений плодами и семенами особенно интересны. Подобные способы могут показаться чуть ли не чудом даже самым стойким скептикам. Поговорим о возможностях природы в таком вопросе чуть более подробно.

После того, так на культуре формируются семена или плод, они созревают и отделяются от родительского растения. Ботаники утверждают, что чем дальше относится такой посадочный материал, тем меньшей будет вероятная конкуренция от родительской особи. Кроме того при широком распространении у растений появляется шанс на колонизацию новых территорий и увеличение размера популяции.

Распространение плодов и семян растений

Распространение животными

Считается, что распространение плодов и семян животными является достаточно надежным, так как разные звери активно посещают участки с высокой плодородностью, на которых семена будут отлично расти. Многие плоды имеют на себе колючки или специальные крючочки, которые цепляются на кожу или на шерсть животных, оказавшихся рядом, что способствует их перенесению на значительное расстояние, после чего они «рано или поздно» упадут в грунт либо будут содраны, но все равно попадут в него.

Яркими примерами таких растений можно назвать лопух, подмаренник цепкий, морковку, череду, лютик, гравилат, а также репешок.

Так гравилат имеет особенные крючочки на столбике, а плоды лопуха окружаются крючкоподобными листиками обертки, также на них есть небольшие достаточно жесткие волоски, способные проникать в кожу и провоцировать раздражение (это приводит к расчесыванию и последующему отпаданию плодов). Подмаренник, морковь и лютик обладают перикарпием, окруженным выростами, похожими на прицепки. А череда имеет на плоде летучку, как у одуванчика, однако с достаточно прочными шипами.

К этой группе растений также можно отнести культуры с сочными плодами, к примеру, ежевику, сливу, томат, яблоню и землянику. После того, как их съедят животные, семена проходят сквозь пищеварительный тракт и попадают наружу с испражнениями. После падения на плодородный грунт такой посадочный материал без труда прорастает.

Распространение ветром

У тех растений, плоды и семена которых переносятся ветром, наличествуют специальные приспособления, облегчающие этот процесс. К таковым можно отнести летучки, их можно увидеть на семенах ивы, кипрея, одуванчика, хлопчатника. Кроме того такое приспособление характерно и для клена, граба, ясеня и пр.

У определенных культур плод похож на коробочку, которая располагается на ножке и колышется ветром, что приводит к рассыпанию многочисленных мелких семян. Такие растения представлены маком, чернушкой, наперстянкой и пр.

У некоторых представителей флоры семена являются столь мелкими и легкими, что могут разноситься ветром, не имея для этого никаких дополнительных приспособлений. В эту группу можно отнести орхидеи. У таких растений семена выпадают после растрескивания шва между плодолистиками. При этом посадочный материал выбрасывается из них достаточно сильным толчком. Дополнительно некоторые растения могут иметь на своих семенах приспособления для переноски ветром, как пример, можно привести кипрей.

Распространение водой

Достаточно немного растений имеют плоды или семена, которые специально приспособились для водного распространения. Такой посадочный материал содержит небольшие воздушные полости, которые удерживают его на поверхности водоема. Как пример можно привести кокосовый орех, представляющий собой костянку с волокнистым покровом и значительным количеством воздухоносных полостей. К такой группе растений относится и кувшинка, чье семя обладает губчатой оболочкой, которая происходит из ножки семязачатка.

Случайные распространения

Ботаники не строго разделяют семена и плоды по категориям, зависящим от метода их распространения. Многие культуры могут распространяться несколькими вышеназванными способами, а то и всеми ими. Самым главным фактором случайного распространения является человек, ведь семена могут с легкостью переноситься на одежде, цепляться к грузам и попадать таким образом на значимое расстояние от родительского растения. Многие зерновые культуры засоряются семенами сорняков. Кроме того посадочный материал может случайно распространяться ураганами, наводнениями и пр.

Самые интересные способы распространения семян растений

Одним из любопытных примеров такого распространения можно назвать процесс разбрасывания семян удивительным растением бешеный огурец. Его плод схож на вид с обычным огурцом, а после достижения полной зрелости его мясистые ткани, окружающие семена, становятся слизистой массой. После того, как плод отделяется от плодоножки, возникает давление на его содержимое, сравнимое с принципом реактивной тяги, благодаря чему происходит разбрасывание семян на значительную площадь. Происходит это наподобие выстрела пушки. Похожим методом распространения семян обладает также обыкновенная кислица.

Бобовые культуры способны выталкивать семена на достаточно большое расстояние, а эшшольция откидывает от себя весь плод вместе с созревшими семечками.

Итак, существует довольно много способов, обеспечивающих размножение и распространение растений по нашей планете.

Реакции на неблагоприятные факторы среды только при некоторых условиях являются губительными для живых организмов, а в большинстве случаев они имеют адаптивное значение. Поэтому эти ответные реакции были названы Селье «общим адаптационным синдромом». В более поздних работах термины «стресс» и «общий адаптационный синдром» он употреблял как синонимы.

Адаптация — это генетически детерминированный процесс формирования защитных систем, которые обеспечивают повышение устойчивости и протекание онтогенеза в неблагоприятных для него условиях.

Адаптация является одним из важнейших механизмов, который повышает устойчивость биологической системы, в том числе растительного организма, в изменившихся условиях существования. Чем лучше организм адаптирован к какому-то фактору, тем он устойчивее к его колебаниям.

Генотипически обусловленная способность организма изменять метаболизм в определенных пределах в зависимости от действия внешней среды называется нормой реакции . Она контролируется генотипом и свойственна всем живым организмам. Большинство модификаций, которые возникают в пределах нормы реакции, имеют адаптивное значение. Они соответствуют изменениям среды обитания и обеспечивают лучшую выживаемость растений при колебаниях условии окружающей среды. В этой связи такие модификации имеют эволюционное значение. Термин «норма реакции» введен В.Л. Йогансеном (1909).

Чем больше способность вида или сорта модифицироваться в соответствии с окружающей средой, тем шире его норма реакции и выше способность к адаптации. Это свойство отличает устойчивые сорта сельскохозяйственных культур. Как правило, несильные и кратковременные изменения факторов внешней среды не приводят к существенным нарушениям физиологических функций растений. Это обусловлено их способностью сохранять относительное динамическое равновесие внутренней среды и устойчивость основных физиологических функций в условиях изменяющейся внешней среды. В то же время резкие и продолжительные воздействия приводят к нарушению многих функций растения, а нередко и к его гибели.

Адаптация включает в себя все процессы и приспособления (анатомические, морфологические, физиологические, поведенческие и др.), которые способствуют повышению устойчивости и способствуют выживанию вида.

1. Анатомо-морфологические приспособления . У некоторых представителей ксерофитов длина корневой системы достигает несколько десятков метров, что позволяет растению использовать грунтовую воду и не испытывать недостатка влаги в условиях почвенной и атмосферной засухи. У других ксерофитов наличие толстой кутикулы, опушенность листьев, превращение листьев в колючки уменьшают потери воды, что очень важно в условиях недостатка влаги.

Жгучие волоски и колючки защищают растения от поедания животными.

Деревья в тундре или на больших горных высотах имеют вид приземистых стелющихся кустарников, зимой они засыпаются снегом, который защищает их от сильных морозов.

В горных районах с большими суточными колебаниями температуры растения часто имеют форму распластанных подушек с плотно расположенными многочисленными стеблями. Это позволяет сохранять внутри подушек влагу и относительно равномерную в течение суток температуру.

У болотных и водных растений формируется специальная воздухоносная паренхима (аэренхима), которая является резервуаром воздуха и облегчает дыхание частей растения, погруженных в воду.

2. Физиолого-биохимические приспособления . У суккулентов приспособлением для произрастания в условиях пустынь и полупустынь является усвоение СО 2 в ходе фотосинтеза по CAM-пути. У этих растений устьица днем закрыты. Таким образом, растение сохраняет внутренние запасы воды от испарения. В пустынях вода является главным фактором, ограничивающим рост растений. Устьица открываются ночью, и в это время происходит поступление СО 2 в фотосинтезирующие ткани. Последующее вовлечение СО 2 в фотосинтетический цикл происходит днем уже при закрытых устьицах.

К физиолого-биохимическим приспособлениям относятся способность устьиц открываться и закрываться, в зависимости от внешних условий. Синтез в клетках абсцизовой кислоты, пролина, защитных белков, фитоалексинов, фитонцидов, повышение активности ферментов, противодействующих окислительному распаду органических веществ, накопление в клетках сахаров и ряд других изменений в обмене веществ содействует повышению устойчивости растений к неблагоприятным условиям внешней среды.

Одна и та же биохимическая реакция может осуществляться несколькими молекулярными формами одного и того же фермента (изоферментами), при этом каждая изоформа проявляет каталитическую активность в относительно узком диапазоне некоторого параметра окружающей среды, например температуры. Наличие целого ряда изоферментов позволяет растению осуществлять реакцию в значительно более широком диапазоне температур, по сравнению с каждым отдельным изоферментом. Это дает возможность растению успешно выполнять жизненные функции в изменяющихся температурных условиях.

3. Поведенческие приспособления, или избегание действия неблагоприятного фактора . Примером могут служить эфемеры и эфемероиды (мак, звездчатка, крокусы, тюльпаны, подснежники). Они проходят весь цикл своего развития весной за 1,5-2 месяца, еще до наступления жары и засухи. Таким образом, они как бы уходят, или избегают попадания под влияние стрессора. Подобным образом раннеспелые сорта сельскохозяйственных культур формируют урожай до наступления неблагоприятных сезонных явлений: августовских туманов, дождей, заморозков. Поэтому селекция многих сельскохозяйственных культур направлена на создание раннеспелых сортов. Многолетние растения зимуют в виде корневищ и луковиц в почве под снегом, защищающим их от вымерзания.

Адаптация растений к неблагоприятным факторам осуществляется одновременно на многих уровнях регуляции — от отдельной клетки до фитоценоза. Чем выше уровень организации (клетка организм, популяция) тем большее число механизмов одновременно участвует в адаптации растений к стрессам.

Регуляция метаболических и адаптационных процессов внутри клетки осуществляется с помощью систем: метаболической (ферментативной); генетической; мембранной. Эти системы тесно связаны между собой. Так, свойства мембран зависят от генной активности, а дифференциальная активность самих генов находится под контролем мембран. Синтез ферментов и их активность контролируются на генетическом уровне, в то же время ферменты регулируют нуклеиновый обмен в клетке.

На организменном уровне к клеточным механизмам адаптации добавляются новые, отражающие взаимодействие органов. В неблагоприятных условиях растения создают и сохраняют такое количество плодоэлементов, которое в достаточном количестве обеспечено необходимыми веществами, чтобы сформировать полноценные семена. Например, в соцветиях культурных злаков и в кронах плодовых деревьев в неблагоприятных условиях более половины заложившихся завязей могут опасть. Такие изменения основаны на конкурентных отношениях между органами за физиологически активные и питательные вещества.

В условиях стрессов резко ускоряются процессы старения и опадения нижних листьев. При этом нужные растениям вещества перемещаются из них в молодые органы, отвечая стратегии выживания организма. Благодаря реутилизации питательных веществ из нижних листьев сохраняются жизнеспособными более молодые — верхние листья.

Действуют механизмы регенерации утраченных органов. Например, поверхность ранения покрывается вторичной покровной тканью (раневой перидермой), рана на стволе или ветке зарубцовывается наплывами (каллюсами). При утрате верхушечного побега у растений пробуждаются спящие почки и усиленно развиваются боковые побеги. Весеннее восстановление листьев вместо опавших осенью — это также пример естественной регенерации органов. Регенерация как биологическое приспособление, обеспечивающее вегетативное размножение растений отрезками корня, корневища, слоевища, стеблевыми и листовыми черенками, изолированными клетками, отдельными протопластами, имеет большое практическое значение для растениеводства, плодоводства, лесоводства, декоративного садоводства и пр.

В процессах защиты и адаптации на уровне растения участвует и гормональная система. Например, при действии неблагоприятных условий в растении резко возрастает содержание ингибиторов роста: этилена и абсциссой кислоты. Они снижают обмен веществ, тормозят ростовые процессы, ускоряют старение, опадение органов, переход растения в состояние покоя. Торможение функциональной активности в условиях стресса под влиянием ингибиторов роста является характерной для растений реакцией. Одновременно с этим в тканях снижается содержание стимуляторов роста: цитокинина, ауксина и гиббереллинов.

На популяционном уровне присоединяется отбор, который приводит к появлению более приспособленных организмов. Возможность отбора определяется существованием внутрипопуляционной изменчивости устойчивости растений к разным факторам внешней среды. Примером внутрипопуляционной изменчивости по устойчивости может служить недружность появления всходов на засоленной почве и увеличение варьирования сроков прорастания при усилении действия стрессора.

Вид в современном представлении состоит из большого числа биотипов — более мелких экологических единиц, генетически одинаковых, но проявляющих разную устойчивость к факторам внешней среды. В различных условиях не все биотипы одинаково жизненны, и в результате конкуренции остаются лишь те из них, которые наиболее отвечают данным условиям. То есть, устойчивость популяции (сорта) к тому или иному фактору определяется устойчивостью составляющих популяцию организмов. Устойчивые сорта имеют в своем составе набор биотипов, обеспечивающих хорошую продуктивность даже в неблагоприятных условиях.

Вместе с тем, в процессе многолетнего культивирования у сортов изменяется состав и соотношение биотипов в популяции, что отражается на продуктивности и качестве сорта, часто не в лучшую сторону.

Итак, адаптация включает в себя все процессы и приспособления, повышающие устойчивость растений к неблагоприятным условиям среды (анатомические, морфологические, физиологические, биохимические, поведенческие, популяционные и др.)

Но для выбора наиболее эффективного пути адаптации главным является время, в течение которого организм должен приспособиться к новым условиям.

При внезапном действии экстремального фактора ответ не может быть отложен, он должен последовать незамедлительно, чтобы исключить необратимые повреждения растения. При длительных воздействиях небольшой силы адаптационные перестройки происходят постепенно, при этом увеличивается выбор возможных стратегий.

В этой связи различают три главные стратегии адаптации: эволюционные , онтогенетические и срочные . Задача стратегии — эффективное использование имеющихся ресурсов для достижения основной цели — выживания организма в условиях стресса. Стратегия адаптации направлена на поддержание структурной целостности жизненно важных макромолекул и функциональной активности клеточных структур, сохранение систем регуляции жизнедеятельности, обеспечение растений энергией.

Эволюционные, или филогенетические адаптации (филогенез — развитие биологического вида во времени) — это адаптации, возникающие в ходе эволюционного процесса на основе генетических мутаций, отбора и передающиеся по наследству. Они являются наиболее надежными для выживания растений.

У каждого вида растений в процессе эволюции выработались определенные потребности к условиям существования и приспособленность к занимаемой им экологической нише, стойкое приспособление организма к среде обитания. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в результате длительного действия соответствующих условий. Так, теплолюбивые и короткодневные растения характерны для южных широт, менее требовательные к теплу и длиннодневные растения — для северных. Хорошо известны многочисленные эволюционные адаптации к засухе растений-ксерофитов: экономное расходование воды, глубоко залегающая корневая система, сбрасывание листьев и переход в состояние покоя и другие приспособления.

В этой связи сорта сельскохозяйственных растений проявляют устойчивость именно к тем факторам внешней среды, на фоне которых проводится селекция и отбор продуктивных форм. Если отбор проходит в ряде последовательных генераций на фоне постоянного влияния какого-либо неблагоприятного фактора, то устойчивость сорта к нему может быть существенно увеличена. Закономерно, что сорта селекции НИИ сельского хозяйства Юго-Востока (г. Саратов), более устойчивы к засухе, чем сорта, созданные в селекционных центрах Московской области. Таким же путем в экологических зонах с неблагоприятными почвенноклиматическими условиями сформировались устойчивые местные сорта растений, а эндемичные виды растений устойчивы именно к тому стрессору, который выражен в ареале их обитания.

Характеристика устойчивости сортов яровой пшеницы из коллекции Всероссийского института растениеводства (Семенов и др., 2005)

Сорт Происхождение Устойчивость
Энита Подмосковье Средне засухоустойчивый
Саратовская 29 Саратовская обл. Засухоустойчивый
Комета Свердловская обл. Засухоустойчивый
Каразино Бразилия Кислотоустойчивый
Прелюдия Бразилия Кислотоустойчивый
Колониас Бразилия Кислотоустойчивый
Тринтани Бразилия Кислотоустойчивый
ППГ-56 Казахстан Солеустойчивый
Ошская Киргизия Солеустойчивый
Сурхак 5688 Таджикистан Солеустойчивый
Мессель Норвегия Соленеустойчивый

В природной обстановке условия среды обычно изменяются очень быстро, и времени, в течение которого стрессовый фактор достигает повреждающего уровня, недостаточно для формирования эволюционных приспособлений. В этих случаях растения используют не постоянные, а индуцируемые стрессором защитные механизмы, формирование которых генетически предопределено (детерминировано).

Онтогенетические (фенотипические) адаптации не связаны с генетическими мутациями и не передаются по наследству. Формирование такого рода адаптаций требует сравнительно много времени, поэтому их называют долговременными адаптациями. Одним из таких механизмов является способность ряда растений формировать водосберегающий путь фотосинтеза CAM-типа в условиях водного дефицита, вызванного засухой, засолением, действием низких температур и других стрессорами.

Эта адаптация связана с индукцией экспрессии «неактивного» в нормальных условиях гена фосфоенолпируваткарбоксилазы и генов других ферментов CAM-пути усвоения СО 2 , с биосинтезом осмолитов (пролина), с активацией антиоксидантных систем и изменением суточных ритмов устьичных движений. Все это приводит к очень экономному расходованию воды.

У полевых культур, например, у кукурузы, аэренхима в обычных условиях произрастания отсутствует. Но в условиях затопления и недостатка в тканях кислорода в корнях у нее происходит гибель части клеток первичной коры корня и стебля (апоптоз, или программируемая смерть клеток). На их месте образуются полости, по которым кислород из надземной части растения транспортируется в корневую систему. Сигналом для гибели клеток является синтез этилена.

Срочная адаптация происходит при быстрых и интенсивных изменениях условий обитания. В основе ее лежит образование и функционирование шоковых защитных систем. К шоковым защитным системам относятся, например, система белков теплового шока, которая образуется в ответ на быстрое повышение температуры. Эти механизмы обеспечивают кратковременные условия выживания при действии повреждающего фактора и тем самым создают предпосылки для формирования более надежных долговременных специализированных механизмов адаптации. Примером специализированных механизмов адаптации является новообразование антифризных белков при низких температурах или синтез сахаров в процессе перезимовки озимых культур. Вместе с тем, если повреждающее действие фактора превышает защитные и репарационные возможности организма, то неминуемо наступает смерть. В этом случае организм погибает на этапе срочной или на этапе специализированной адаптации в зависимости от интенсивности и продолжительности действия экстремального фактора.

Различают специфические и неспецифические (общие) ответные реакции растений на стрессор.

Неспецифические реакции не зависят от природы действующего фактора. Они одни и те же при действии высокой и низкой температуры, недостатка или избытка влаги, высокой концентрации солей в почве или вредных газов в воздухе. Во всех случаях в клетках растений повышается проницаемость мембран, нарушается дыхание, возрастает гидролитический распад веществ, увеличивается синтез этилена и абсцизовой кислоты, тормозится деление и растяжение клеток.

В таблице представлен комплекс неспецифических изменений, протекающих у растений под влиянием различных факторов внешней среды.

Изменение физиологических параметров у растений под действием стрессовых условий (по Г.В, Удовенко, 1995)

Параметры Характер изменения параметров в условиях
засухи засоления высокой температуры низкой температуры
Концентрация ионов в тканях Растет Растет Растет Растет
Активность воды в клетке Падает Падает Падает Падает
Осмотический потенциал клетки Растет Растет Растет Растет
Водоудерживающая способность Растет Растет Растет
Водный дефицит Растет Растет Растет
Проницаемость протоплазмы Растет Растет Растет
Интенсивность транспирации Падает Падает Растет Падает
Эффективность транспирации Падает Падает Падает Падает
Энергетическая эффективность дыхания Падает Падает Падает
Интенсивность дыхания Растет Растет Растет
Фотофосфорилирование Снижается Снижается Снижается
Стабилизация ядерной ДНК Растет Растет Растет Растет
Функциональнаяя активность ДНК Снижается Снижается Снижается Снижается
Концентрация пролина Растет Растет Растет
Содержание водорастворимых белков Растет Растет Растет Растет
Синтетические реакции Подавлены Подавлены Подавлены Подавлены
Поглощение ионов корнями Подавлено Подавлено Подавлено Подавлено
Транспорт веществ Подавлен Подавлен Подавлен Подавлен
Концентрация пигментов Падает Падает Падает Падает
Деление клеток Тормозится Тормозится
Растяжение клеток Подавлено Подавлено
Число плодоэлементов Снижено Снижено Снижено Снижено
Старение органов Ускорено Ускорено Ускорено
Биологический урожай Понижен Понижен Понижен Понижен

Исходя из данных таблицы видно, что устойчивость растений к нескольким факторам сопровождается однонаправленными физиологическими изменениями. Это дает основание считать, что повышение устойчивости растений к одному фактору может сопровождаться повышением устойчивости к другому. Это подтверждено экспериментами.

Опытами в Институте физиологии растений РАН (Вл. В. Кузнецов и др.) показано, что кратковременная тепловая обработка растений хлопчатника сопровождается повышением их устойчивости к последующему засолению. А адаптация растений к засолению приводит к повышению их устойчивости к высокой температуре. Тепловой шок повышает способность растений приспосабливаться к последующей засухе и, наоборот, в процессе засухи повышается устойчивость организма к высокой температуре. Кратковременное воздействие высокой температурой повышает устойчивость к тяжелым металлам и УФ-Б облучению. Предшествующая засуха способствует выживанию растений в условиях засоления или холода.

Процесс повышения устойчивости организма к данному экологическому фактору в результате адаптации к фактору иной природы называется кросс-адаптацией .

Для изучения общих (неспецифических) механизмов устойчивости большой интерес представляет ответ растений на факторы, вызывающие у растений водный дефицит: на засоление, засуху, низкие и высокие температуры и некоторые другие. На уровне целого организма все растения реагируют на водный дефицит одинаково. Характерно угнетение роста побегов, усиление роста корневой системы, синтеза абсцизовой кислоты, снижение устьичной проводимости. Спустя некоторое время, ускоренно стареют нижние листья, и наблюдается их гибель. Все эти реакции направлены на снижение расходования воды за счет сокращения испаряющей поверхности, а также за счет увеличения поглотительной деятельности корня.

Специфические реакции — это реакции на действие какого-либо одного стрессового фактора. Так, фитоалексины (вещества со свойствами антибиотиков) синтезируются в растениях в ответ на контакт с болезнетворными микроорганизмами (патогенами).

Специфичность или не специфичность ответных реакций, подразумевает, с одной стороны, отношение растения к различным стрессорам и, с другой стороны, характерность реакций растений различных видов и сортов на один и тот же стрессор.

Проявление специфических и неспецифических ответных реакций растений зависит от силы стресса и скорости его развития. Специфические ответные реакции возникают чаще, если стресс развивается медленно, и организм успевает перестроиться и приспособиться к нему. Неспецифические реакции обычно возникают при более кратковременном и сильном действии стрессора. Функционирование неспецифических (общих) механизмов устойчивости позволяет растению избегать больших затрат энергии для формирования специализированных (специфических) механизмов адаптации в ответ на любое отклонение от нормы условий их обитания.

Устойчивость растений к стрессовому воздействию зависит от фазы онтогенеза. Наиболее устойчивы растения и органы растений в покоящемся состоянии: в виде семян, луковиц; древесные многолетние — в состоянии глубокого покоя после листопада. Наиболее чувствительны растения в молодом возрасте, так как в условиях стресса процессы роста повреждаются в первую очередь. Вторым критическим периодом является период формирования гамет и оплодотворения. Действие стресса в этот период приводит к снижению репродуктивной функции растений и снижению урожая.

Если стрессовые условия повторяются и имеют небольшую интенсивность, то они способствуют закаливанию растений. На этом основаны методы повышения устойчивости к низким температурам, жаре, засолению, повышенному содержанию в воздухе вредных газов.

Надежность растительного организма определяется его способностью не допускать или ликвидировать сбои на разных уровнях биологической организации: молекулярном, субклеточном, клеточном, тканевом, органном, организменном и популяционном.

Для предотвращения сбоев в жизнедеятельности растений под влиянием неблагоприятных факторов используются принципы избыточности , гетерогенности функционально равнозначных компонентов , системы репарации утраченных структур .

Избыточность структур и функциональных возможностей — один из основных способов обеспечения надежности систем. Избыточность и резервирование имеет многообразные проявления. На субклеточном уровне повышению надежности растительного организма способствуют резервирование и дублирование генетического материала. Это обеспечивается, например, двойной спиралью ДНК, увеличением плоидности. Надежность функционирования растительного организма в изменяющихся условиях поддерживается также благодаря наличию разнообразных молекул информационной РНК и образованию гетерогенных полипептидов. К ним относятся и изоферменты, которые катализируют одну и ту же реакцию, но отличаются по свои физико-химическим свойствам и устойчивостью структуры молекул в изменяющихся условиях среды.

На уровне клетки пример резервирования — избыток клеточных органелл. Так, установлено, что для обеспечения растения продуктами фотосинтеза достаточно части имеющихся хлоропластов. Остальные хлоропласты как бы остаются в резерве. То же касается и общего содержания хлорофилла. Избыточность проявляется также в большом накоплении предшественников для биосинтеза многих соединений.

На организменном уровне принцип избыточности выражается в образовании и в разновременной закладке большего, чем требуется для смены поколений, числа побегов, цветков, колосков, в огромном количестве пыльцы, семязачатков, семян.

На популяционном уровне принцип избыточности проявляется в большом числе особей, различающихся по устойчивости к тому или иному стрессовому фактору.

Системы репарации также работают на разных уровнях — молекулярном, клеточном, организменном, популяционном и биоценотическом. Репаративные процессы идут с затратой энергии и пластических веществ, поэтому репарация возможна только при сохранении достаточной интенсивности обмена веществ. Если обмен веществ прекращается, то прекращается и репарация. В экстремальных условиях внешней среды особенно большое значение имеет сохранение дыхания, так как именно дыхание обеспечивает энергией репарационные процессы.

Восстановительная способность клеток адаптированных организмов определяется устойчивостью их белков к денатурации, а именно устойчивостью связей, которые определяют вторичную, третичную и четвертичную структуру белка. Например, устойчивость зрелых семян к высоким температурам, как правило, связана с тем, что после обезвоживания их белки приобретают устойчивость к денатурации.

Главным источником энергетического материала как субстрата дыхания является фотосинтез, поэтому от устойчивости и способности фотосинтетического аппарата восстанавливаться после повреждений зависит энергообеспечение клетки и связанные с ним репарационные процессы. Для поддержания фотосинтеза в экстремальных условиях в растениях активизируется синтез компонентов мембран тилакоидов, происходит торможение окисления липидов, восстанавливается ультраструктура пластид.

На организменном уровне примером регенерации может служить развитие замещающих побегов, пробуждение спящих почек при повреждении точек роста.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Теперь, когда мы познакомились с отличитель­ными признаками четырех основных групп рас­тений, а именно моховидных, папоротниковид­ных, голосеменных и покрытосеменных (цвет­ковых), нам легче представить эволюционный прогресс, сделанный растениями в процессе адаптации к жизни на суше.

Проблемы

Пожалуй, наитруднейшей проблемой, которую надо было как-то преодолеть, чтобы перейти от водного образа жизни к наземному, была про­блема обезвоживания . Любое растение, незащи­щенное тем или иным способом, например не покрытое восковой кутикулой, очень скоро вы­сохнет и несомненно погибнет. Даже если пре­одолеть эту трудность, останутся другие нере­шенные проблемы. И прежде всего вопрос о том, как успешно осуществить половое размножение. У первых растений в размножении участвовали мужские гаметы, способные приблизиться к женским гаметам, только плавая в воде.

Обычно считают, что первые растения, осво­ившие сушу, произошли от зеленых водорослей, у отдельных из наиболее эволюционно продви­нутых представителей которых появились ре­продуктивные органы, а именно архегонии (женские) и антеридии (мужские); в этих органах были спрятаны, а, следовательно и защищены гаметы. Это обстоятельство и ряд других вполне определенных приспособлений, помогающих избежать высыхания, позволили некоторым представителям зеленых водорослей завладеть сушей.

Одна из важнейших эволюционных тенден­ций у растений – это постепенно увеличиваю­щаяся независимость их от воды.

Ниже перечислены те основные трудности, которые связаны с переходом от водного к на­земному существованию.

  1. Обезвоживание. Воздух – это среда, спо­собствующая высыханию, а вода необхо­дима для жизни по целому ряду причин (разд. 3.1.2). Следовательно, возникает не­обходимость в приспособлениях для полу­чения и запасания воды.
  2. Размножение. Нежные половые клетки должны быть защищены, а подвижные мужские гаметы (спермии) могут встре­титься с женскими гаметами только в воде.
  3. Опора. В отличие от воды воздух не может служить опорой растениям.
  4. Питание. Растениям необходимы свет и ди­оксид углерода (CO 2) для фотосинтеза, поэтому хотя бы часть растения должна возвы­шаться над землей. Однако минеральные соли и вода находятся в почве или на ее по­верхности, и, чтобы эффективно использо­вать эти вещества, часть растения должна находиться в земле и расти в темноте.
  5. Газообмен. Для фотосинтеза и дыхания нужно, чтобы обмен диоксида углерода и кислорода происходил не с окружающим раствором, а с атмосферой.
  6. Факторы окружающей среды. Вода, осо­бенно, когда ее так много, как, скажем, в озере или в океане, обеспечивает высокое постоянство условий окружающей среды. Наземная же среда обитания в гораздо большей степени характеризуется измен­чивостью таких важных факторов, как температура, интенсивность освещения, концентрация ионов и pH.

Печеночники и мхи

Мхи хорошо приспособились к распростране­нию спор в наземных условиях: оно зависит от высыхания коробочки и рассеивания мелких легких спор ветром. Однако эти растения все еще находятся в зависимости от воды по следую­щим причинам.

  1. Вода необходима им для размножения, по­скольку спермии должны подплывать к ар­хегониям. У этих растений возникли адап­тации, позволяющие им высвобождать спермии только во влажной среде, потому что только в такой среде вскрываются ан­теридии. Эти растения частично приспо­собились к наземной жизни, поскольку га­меты у них образуются в защитных струк­турах – антеридиях и архегониях.
  2. У них нет специальных опорных тканей, и поэтому рост растения вверх ограничен.
  3. У моховидных нет корней, способных да­леко проникать в субстрат, и они могут жить только там, где на поверхности поч­вы или в ее верхних слоях имеется доста­точно влаги и минеральных солей. Однако у них имеются ризоиды, которыми они прикрепляются к грунту; это – одна из адаптаций к жизни на твердом субстрате.

2.4. Печеночники и мхи часто называют амфибиями (земноводными) растительного мира. Объясните вкратце, почему.

Папоротники

2.5. Папоротники лучше адаптировались к жизни на суше, чем печеночники и мхи. В чем это проявляется?

2.6. По каким важным признакам мхи, папоротники и печеночники плохо адаптировались к жизни на суше?

Семенные растения – хвойные и цветковые

Одна из основных трудностей, с которой сталки­ваются растения на суше, связана с уязвимостью гаметофитного поколения. Например, у папо­ротников гаметофит – это нежный заросток, который образует мужские гаметы (спермии), нуждающиеся в воде, чтобы достичь яйцеклетки. Однако у семенных растений гаметофит защи­щен и сильно редуцирован.

Семенные растения обладают тремя важны­ми преимуществами: во-первых, разноспорово­стью; во-вторых, появлением неплавающих мужских гамет и, в-третьих, образованием се­мян.

РАЗНОСПОРОВОСТЬ И НЕПЛАВАЮЩИЕ МУЖСКИЕ ГАМЕТЫ.

Рис. 2.34. Обобщенная схема жизненного цикла растений, отражающая чередование поколений. Обратите вни­мание на наличие гаплоидных (n) и диплоидных (2n) стадий. Гаметофит всегда гаплоидный и всегда образует га­меты путем митотического деления. Спорофит всегда диплоидный и всегда образует споры в результате мейо­тического деления.

Очень важную роль в эволюции растений сыгра­ло возникновение некоторых папоротников и их близких родичей, образующих споры двух типов. Явление это называют разноспоровостью , а рас­тения – разноспоровыми. Все семенные растения относятся к разноспоровым. Они образуют крупные споры, называемые мегаспорами , в спорангиях одного типа (мегаспорангиях) и мелкие споры, называемые микроспорами, – в споран­гиях другого типа (микроспорангиях). Прора­стая, споры образуют гаметофиты (рис. 2.34). Мегаспоры развиваются в женские гаметофиты, микроспоры – в мужские. У семенных растений гаметофиты, образуемые мегаспорами и микро­спорами, очень малы по размерам и никогда не высвобождаются из спор. Таким образом, гаме­тофиты оказываются защищенными от высыха­ния, что представляет собой важное эволюцион­ное достижение. Однако спермии из мужского гаметофита все еще должны перемещаться к женскому гаметофиту, что значительно облегча­ется рассеиванием микроспор. Будучи очень мелкими, они могут образовываться в больших количествах и разноситься ветром далеко от ро­дительского спорофита. Случайно они могут оказаться в тесной близости от мегаспоры, кото­рая у семенных растений не отделяется от роди­тельского спорофита (рис. 2.45). Именно таким путем и происходит опыление у растений, пыль­цевые зерна которых представляют собой мик­роспоры. В пыльцевых зернах образуются муж­ские гаметы.

Рис. 2.45. Схематическое изображение основных элементов разноспоровости и опыления.

У семенных растений возникло еще одно эво­люционное преимущество. Мужским гаметам не нужно больше подплывать к женским гаметам, поскольку у семенных растений появились пыль­цевые трубки. Они развиваются из пыльцевых зе­рен и растут в направлении женских гамет. По этой трубке мужские гаметы достигают женской гаметы и оплодотворяют ее. Плавающие спермии больше не образуются, в оплодотворении участ­вуют только мужские ядра.

Следовательно, у растений выработался ме­ханизм оплодотворения, независимый от воды. Это и послужило одной из причин, по которой семенные растения столь превзошли другие рас­тения в освоении суши. Первоначально опыле­ние происходило только с помощью ветра – процесс довольно случайный, сопровождаю­щийся большими потерями пыльцы. Однако уже на ранних этапах эволюции примерно 300 млн. лет назад в каменноугольном периоде, появились летающие насекомые, а с ними и воз­можность более эффективного опыления. Цвет­ковые растения широко используют опыление насекомыми, тогда как у хвойных все еще пре­обладает опыление ветром.

СЕМЕНА. У ранних разноспоровых растений мегаспоры высвобождались из родительского спорофита подобно микроспорам. У семенных же растений мегаспоры не отделяются от роди­тельского растения, оставаясь в мегаспорангиях, или семязачатках (рис. 2.45). Семязачаток содер­жит женскую гамету. После оплодотворения женской гаметы семязачаток называют уже семенем . Таким образом, семя – это оплодотворен­ный семязачаток. Наличие семязачатка и семени дает определенные преимущества семенным растениям.

  1. Женский гаметофит защищен семязачат­ком. Он полностью зависит от родитель­ского спорофита и в отличие от свободно живущего гаметофита нечувствителен к обезвоживанию.
  2. После оплодотворения в семени образует­ся запас питательных веществ, получаемых гаметофитом от родительского спорофит­ного растения, от которого он по-прежне­му не отделен. Этот запас используется развивающейся зиготой (следующим спо­рофитным поколением) после прораста­ния семени.
  3. Семена предназначены для того, чтобы переживать неблагоприятные условия, и остаются в состоянии покоя до тех пор, пока условия не станут благоприятными для прорастания.
  4. У семян могут развиваться различные приспособления, облегчающие их распространение.

Семя представляет собой сложную структуру, в которой собраны клетки трех поколений – ро­дительского спорофита, женского гаметофита и зародыша следующего спорофитного поколе­ния. Родительский спорофит дает семени все, что нужно для жизни, и только после того, как семя полностью созреет, т.е. накопит запас пи­тательных веществ для зародыша спорофита, оно отделяется от родительского спорофита.

2.7. Шансы для выживания и развития пыльцевых зерен (микроспор), переносимых ветром, намного меньше, чем для спор Dryopteris. Почему?

2.8. Объясните, почему мегаспоры крупные, а микроспоры мелкие.

2.7.7. Краткое перечисление адаптаций семенных растений к жизни на суше

Основные преимущества семенных растений над всеми остальными сводятся к следующему.

  1. Гаметофитное поколение сильно редуци­ровано и полностью зависит от хорошо приспособленного к жизни на суше спорофита, внутри которого гаметофит всегда защищен. У других растений гаметофит очень легко высыхает.
  2. Оплодотворение происходит независимо от воды. Мужские гаметы неподвижны и разносятся внутри пыльцевых зерен вет­ром или насекомыми. Окончательный пе­ренос мужских гамет к женским происхо­дит с помощью пыльцевой трубки.
  3. Оплодотворенные семязачатки (семена) остаются некоторое время на родитель­ском спорофите, от которого они получа­ют защиту и пищу прежде, чем будут раз­веяны.
  4. У многих семенных растений наблюдается вторичный рост с отложением больших количеств древесины, несущей опорную функцию. Такие растения вырастают в де­ревья и кустарники, способные эффектив­но конкурировать в борьбе за свет и другие ресурсы.

Некоторые из важнейших эволюционных тенденций приводятся в обобщенном виде на рис. 2.33. У семенных растений имеются и другие признаки, присущие растениям не только этой группы, но также выполняющие роль адаптаций к жизни на суше.

Рис. 2.33. Систематика растений и некоторые основные тенденции в эволюции растений.

  1. Настоящие корни обеспечивают извлече­ние влаги из почвы.
  2. Растения защищены от высыхания эпи­дермисом с водонепроницаемой кутику­лой (или пробкой, образующейся после вторичного роста).
  3. Эпидермис наземных частей растения, особенно листьев, пронизан множеством мельчайших щелей, называемых устьицами , через которые осуществляется газооб­мен между растением и атмосферой.
  4. У растений имеются и специализирован­ные адаптации к жизни в жарких засушли­вых условиях (гл. 19 и 20).