Пошаговая перемотка трансформатора на практическом примере. Мощный блок питания из трансформатора микроволновки Методика перемотки вторичной обмотки электронного трансформатора

Данная статья не претендует на звание бестселлера научно популярной литературы, а скорее руководством для начинающих. В статье рассказывается сам процесс намотки, а не его расчёт.

Рано или поздно в практике каждого радиолюбителя возникает вопрос о том чем питать то или иное устройство. Самые ходовые мощности УНЧ это 2*100 или 2*200. Поэтому оптимальным вариантом есть «бублик» на 150 ватт габаритной мощности, в первом случае такой нужен один для 2 каналов, в другом парочка для двойного моно. Тороидальный трансформатор обладает лучшим соотношением размер-мощность, высокий КПД, а также минимальными помехами. Именно поэтому их так любят аудиофилы. Рассмотрим процесс намотки этого типа трансформаторов более подробно.

Основное, что должен знать и главное понимать человек который мотает трансформатор:

  • длина провода (количество витков) это напряжение;
  • сечение проводника- это ток которым можно нагружать его;
  • если число витков в первичной цепи малое, то это лишний нагрев провода;
  • если габаритная мощность недостаточная (потребляется больше возможного) , это опять таки тепло;
  • перегрев трансформатора приводит к снижению надёжности.

Итак, что нужно для намотки:

  1. Трансформаторное железо в форме тора (далее я напишу где взять);
  2. Лакопровод (на обмотку трансформатора нужен обмоточный провод);
  3. Скотч малярный (бумажный);
  4. Клей ПВА;
  5. Тканевая изолента или киперка;
  6. Кусочки провода в изоляции;
  7. И последнее, но главное - это желание.

ТРАНСФОРМАТОРНОЕ ЖЕЛЕЗО

Рассказывать о том как рассчитать мощность железа я не буду для этого есть уже очень много статей… Расчёт мощности сложен с практической точки зрения, так как не известна марка стали, качество её производства. Поэтому два сердечника с одной габаритной массой имеют разные параметры. Рассмотрим пример намотки сердечника на уже «отработанном» сердечнике. Один из самых легко доставаемых сердечников, качество которого достойно внимания. Является сердечник из советского стабилизатора «Украина-2»(сн-315). В своё время их много погорело, и на рынке можно достать такой аппарат за 20 грн… Нас интересует тор. Намотан этот бублик алюминиевым лакопроводом, мы нещадно его сматываем (или скусываем), нам необходим сердечник (аккуратно чтобы не повредить сердечник). Алюминиевый провод можно использовать для других целей (веники скручивать или провода), или как в моём случае я его переплавляю для других целей (делаю радиаторы). После сматывания получается красивый сердечник с габаритами 96-54-32 мм, соответственно наружный, внутренний диаметр и высота. Ниже приведён пример такого сердечника (Рис.1). Габаритная мощность такого сердечника не менее 120 ватт (проверено на практике).

Перед намоткой необходимо подготовить железо к намотке. Если посмотрите на углы трансформатора то уведите что они под углом 90 градусов, в этих точках будет изгибаться провод и будет облущиваться лак, что б этого не было необходимо обработать углы напильником скруглив их максимально (понимаю что лень но нужно). Минимальный радиус окружности 3мм. На Рис.1 видно что углы уже обработаны, и тор готов к намотке. Небольшая хитрость, при обработке углов напильником необходимо избегать зализывания стали, дабы слои между собой оставались не замкнутыми! Для этого следует производить движения напильником вдоль направления трансформаторной ленты. После обработки рекомендую просмотреть углы на замыкание слоев и доработать их мелким напильником.

Что-б изолировать сердечник от обмотки необходимо его изолировать ТКАНЕВОЙ изолентой (или киперкой пропитанной парафином-воском). Лучше использовать изоленту из шириной около 25мм (Рис.2), тогда будет максимальное покрытие металла в один слой, что позволяет экономить место в окне. Конец намотки не заклеиваем (читаем дальше).

После этих операций сердечник готов к намотке и мы переходим к следующему шагу.

ЛАКОПРОВОД

Лакопроводом я называю электрический проводник изоляция которого сделана из лака (по культурному намоточный или обмоточный провод). Бывает разных марок ПЭВ, ПЭВ-2, ПЭТ-155 и другие. Рекомендую использовать ПЭВ-2, насыщенный оранжевый цвет. Также очень хорошо себя показал провод очень тёмный с виду (ПЭЛ), цвета гнилой вишни, такой имеет толстый слой изоляции, что позволяет его использовать для трансформаторов высоковольтников (более 500В). К примеру провод ПЭВ-2, диаметром 1,6мм имеет толщину изоляции около 0,06-0,07мм, а «чёрный» 0,1-0,11мм.

Расчёт сечения провода очень интересный процесс. На эту тему в интернете есть много литературы, и писать о всяких расчётах и тонкостях я не буду (Google в помощь). В зависимости от выбранной вами плотности тока будет разное сечение провода. Главное, что требуется это правильно соотношение мощностей. Необходимо чтоб мощность вторичной обмотки не привышала больше возможности первичной. Как известно КПД трансформаторов в виде тора очень высок и равняется около 97%, поэтому при намотке тора мощностью в 200 ватт, 6 ватт потерь это мелочь которой можно пренебречь. Считаем, что мощность первичной обмотки больше или равна мощности сумме всех вторичных обмоток.

Пример расчёта. Нужно намотать трансформатор. Первичная обмотка рассчитана на 220В. Вторичных обмоток две по 28В. Диаметр провода первичной обмотки 0,6мм в лаке. Толщина лака около 0,06мм и того «чистый» диаметр провода первичной обмотки около 0,54мм. Подставляем в формулу площади круга и получаем сечение 0,228 мм 2 (если вы не знаете как я это рассчитал то купите усилитель и не заморачивайтесь). И так за пропорциею получаем 220В/28В*2=3,92 это значит что вторичная обмотка должна иметь сечение в 3,92 раза толще за первичную обмотку. Как вы видите я не использовал мощность и соответственно плотность тока. Каждый берет плотность тока какую считает правильной (для себя я принимаю 4А/мм 2 , и мои мысли подтверждают реальный тест транса который я дальше опишу).

Для сердечника который описан выше лучше использовать провод по первичке не менее 0,6мм в диаметре. Провод такого сечения и необходимой длины можно найти в старых ламповых телевизорах, ввиде петель размагничеваний. На рынке всегда есть люди которые занимаются покупкой старых телевизоров («барахольщики»), у них можно найти необходимый провод. У нас на рынке есть два вида петель: маленькие и большие, меньшие по 20 грн, большие по 50.

Маленькие по диаметру, таких в телевизорах используется по 2 штуки. Диаметр такой половинчатой петли размагничивания около 40-50см, сечения проводника где-то около 0,6мм. При качественной укладке этой петли хватает на намотку первичной обмотки одного тора с запасом в пару метров.

Если же использовать большую петлю, то длина провода такой буквально в полтора раза больше маленькой по этому выгоднее покупать маленькие петли. Бывает попадается петля от лампового, цветного телевизора, длина провода в такой петле аналогична но сечение провода может достигать 0,7мм. Если вам такая попалась значит повезло.

И так вы нашли петлю размагничивания как правило она обмотана киперной тканью (тряпочная полоска), а сверху прозрачной лентой или изолентой. Возле выводов проводов находится стык, где можно зацепится и аккуратно размотать петлю. Не нужно срезать, спиливать, срывать изоляцию вы можете повредить провод, кроме того эта изоляция нам ещё понадобится. После сматывания у нас остаётся красивый провод который можно использовать. Некоторые перематывают провод на «челнок», лично я так не делаю, зачем провод лишний раз изгибать, если он и так нужной формы, кроме того если наматывать маленькие торы, то челнок займёт больше места и может не пролезть в окно, а также повредить лак. Перед тем как начать его наматывать необходимо сделать скрутки чтоб провод не разъезжался. Для того чтоб делать скрутки необходимо взять кусочки одножильного провода (желательно в ПВХ-изоляции) длиной по 5-7см. Обматываем петлю по кругу из несильно плотным шагом, потом в ходе намотки чтоб добавить (отмотать провода) нужно будет просто прокрутить эту пружинку и провод отделится (смотрим фото Рис.3).

Теперь наша петля имеет один конец с наружной части, а другой где-то внутри, нам нужен именно наружный. Далее вернёмся к железу которое у нас уже обработано и обмотано изолентой или киперкой. Помните мы не заклеивали край вот зачем (смотри на Рис.4). С той стороны где будет верх транса(выводы вверх выходят) на углу тора делаем надрез по центру изоленты и продеваем туда лакопровод уже в изоляции это будет отвод начала обмотки. Некоторые рекомендуют припаивать кусочек гибкого многожильного провода в изоляции и делать такой отвод. Меня такой вариант не устраивает потому что таким образом я не знаю какой провод находится в первичке, а так даже через десяток лет микрометром померил и знаешь что можно жать с него, а с отводом кто знает что там за сечение. Хотя дело ваше.

Изготовим выводы для провода. Выводы обмоток необходимо «усилить» при помощи дополнительной изоляции. Для этих вещей очень хорошо подходит ПВХ-изоляция (советская белая), но ещё лучше подходит изоляция из провода необходимого сечения. Применять термоусадку можно, но лучше использовать ПВХ или изоляцию потому как первая имеет свойство изгибаться в одном месте что нам очень не нужно мы от этого пытаемся защитится дабы провод не отломался. Для того, чтобы стянуть изоляцию рекомендую взять провод который имеет дополнительную изоляцию в виде нитки обмотанную вокруг проводника. В этом случае нить не дает сильной связи между ПВХ и медью и позволяет стянуть изоляцию. Чтоб было проще стягивать провод нужно немного перегибать (под 45 градусов). Рекомендую за раз «натягать» изоляции и пользоваться. (Рис.2).

Отечественные обмоточные провода

Наибольшее распространение получили обмоточные провода в эмалевой изоляции на основе высокопрочных синтетических лаков с температурным индексом (ТИ) в диапазоне 105...200. Под ТИ понимается температура провода, при которой его полезный ресурс не менее 20000 ч.

Медные эмалированные провода с изоляцией на основе масляных лаков (ПЭЛ) выпускаются с диаметром жилы 0,002...2,5 мм. Такие провода обладают высокими электроизоляционными характеристиками, которые практически не зависят от внешнего влияния повышенных температур и влажности.

Проводам типа ПЭЛ свойственна большая зависимость от внешнего воздействия растворителей, относительно проводов с изоляцией на основе синтетических лаков. Обмоточный провод ПЭЛ можно отличить от других даже по внешнему признаку - эмалевое покрытие по цвету близко к черному.

Медные провода типов ПЭВ-1 и ПЭВ-2 (выпускаются с диаметром жилы 0,02...2,5 мм) имеют поливинилацетатную изоляцию и отличаются золотистым цветом. Медные провода типов ПЭМ-1 и ПЭМ-2 (с тем же диаметром, как и ПЭВ) и прямоугольные медные проводники ПЭМП (сечением 1,4...20 мм2) имеют лакированную изоляцию на поливинил-формалевом лаке. Индекс «2» в соответствующем обозначении проводов ПЭВ и ПЭМ характеризует двухслойную изоляцию (повышенной толщины).

ПЭВТ-1 и ПЭВТ-2 - эмалированные провода с температурным индексом 120 (диаметром 0,05...1,6 мм), они имеют изоляцию на основе полиуретанового лака. Такие провода удобно монтировать. При пайке не требуется зачищать лакированную изоляцию и применять флюсы. Достаточно обычного припоя марки ПОС-61 (или аналогичного) и канифоли.

Эмалированные провода с изоляцией на полиэфирамидной основе ПЭТ-155 имеют ТИ равный 155. Они выпускаются с жилами не только круглого сечения (диаметра), но и прямоугольного (ПЭТП) типа с диаметром проводника 1,6-1 1,2 мм2. По своим параметрам провода ПЭТ близки к рассмотренным выше проводам типа ПЭВТ, но имеют более высокую стойкость к нагреванию и тепловому удару. Поэтому обмоточные провода типов ПЭВТ и ПЭТ, ПЭТП особенно часто можно встретить в мощных трансформаторах, в том числе в трансформаторах для сварочных работ.

ПРОЦЕСС НАМОТКИ

Для намотки транса вам потребуется 4-5 вечеров и по 2 часа времени, почему не менее 4 дней поймёте дальше.

Один конец провода мы уже запустили и прижали. Далее начинается самое муторное намотка. Мотать рекомендую так. Берём транс (пока что железо), одеваем перчатку или берём в руку какую либо ветошь из натуральной ткани. Усаживаемся на диван или кровать включаем фильм который уже видел или музыку (чтоб не сильно отвлекаться), и начинаем мотать. Каждый виток продеваем в кольцо железа. Мотать нужно виток к витку из внутренней стороны (некоторые умудряются с наружной, каким образом не представляю).

Для того чтоб легче было считать витки их лучше группировать по 5 или 10 витков. Натягивать провод необходимо не чётко перпендикулярно (пунктир красная линия) к касательной (чисто красная), а слегка наклонено в сторону намотки(желтый), как будто внутренняя часть намотки идёт впереди наружной (Рис.5). Таким образом намотки провод при натяжке будет сам прижимается к другим уже уложенным виткам. Если у вас провод погнутый он идеально не уложится поэтому он должен быть максимально прямым, для этого во время намотки его нужно сильно натягивать тем самым его выпрямляя. Вот зачем нужны перчатки или ветошь, если не применять перчатки то пальцы и ладонь очень быстро устают и болят. Если наматывать провод сечением больше 1,5мм (очень тяжело) то рекомендую провод для простоты выпрямления слегка перегибать под натяжкой.

(Отец моего друга мотает сварочники 50 герц, вторичка шинка медь 35 квадратов укладывает руками идеально ровно, так он изгибает 5 копеек украины в пельмень- пальцами).

Во время намотки провод осматривается на наличие изъянов, особенно в местах изгиба, если лак нарушен то замазываем его аккуратно изолирующем цапон лаком или краской (на крайний случай обычным лаком для ногтей).

Когда намотали слой до конца. Между слоями необходимо делать межслойную изоляцию. Мне повезло и у меня есть некоторые заначки лакоткани, причем ткань такая что тянется и пропитана чем то липким. Такая если прилипает друг до друга(сложилась) то её очень сложно разделить. От неё слипаются пальцы. Такая лакоткань идеальный изолятор, кроме того обмотка не дребезжит даже при перегрузке. Но такое есть у очень малого числа людей. Теже функции изолятора очень хорошо реализовать при помощи малярного скотча.

После того как намотали слой берём и изолируем его при помощи малярного скотча. Делаем полосочки шириной где-то по 15мм. И этими полосками обматываем транс изначально что-б про изолировать внутреннюю часть намотки провода (изнутри бублика). Затем изолируем пробелы с наружной части бублика. В результате изоляции скотчем получится, что изнутри изоляция накладыванием слоев, станет в два раза толще, с наружи одинарная. После того как обмотали необходимо обильно смазать тор клеем ПВА, это делается для того что-б скотч не разматывался, а также он станет крепче и как будто цельный. Помимо всего клей будет удерживать обмотки что-б те не «гудели». Клея жалеть не нужно, смазываем пальцем и слегка втираем. После чего тору необходимо высохнуть. Я обычно мотаю тор вечером, намотав слой пропитываю клеем, а сам тор для хорошей циркуляции воздуха, ложу на игольчатый радиатор. За ночь тор высыхает и его можно мотать дальше. Вот почему минимум 4 вечера потребуется на намотку (4 вечера- 4 слоя). При необходимости можно ускорить процесс высыхания феном. Мотаем следующий слой… сам процесс намотки аналогичен и ни чем не отличается. По окончанию намотки конец намотки помещаем в такую же изоляцию как в начале обмотки. Затем конец обмотки закрепляем малярным скотчем, изолируем обмотку при помощи скотча малярного и пропитываем клеем.

Есть ещё один хороший вариант изоляции между слоями. Очень хорошо будет если в ходе намотки будете использовать бумагу для выпечки (пергамент) нарезанную на такие же полосочки и после обмотанной. В итоге транс необходимо будет пропитать, а реально сварить на паровой бане смеси 50:50 соответственно парафин:воск. Паровая баня берем в кастрюлю набираем воды и ставим кипятится(нам нужен пар). Сверху устанавливаем емкость в которой помещен трансформатор и воск-парафин. Трансформатор зарание подвязываем на проволоку, конец оставляем(когда смесь потечёт за эту нить нужно в мокать трансформатор как пакетик чая в чашке). Когда будете окунать трансформатор нужно осторожно дабы капли воска не попали на пламя, очень сильно горючь!!! Ранее именно таким "расстовором" пропитывались выходные трансформаторы для ламповых УНЧ, Хотя и другие качественные трансы тоже. Когда смесь разогрета она имеет очень высокую текучесть почти как у воды, в результате чего бумага стает буквально пропитана парафином и воском. Однако этот вариант будет изначально не эффективен если транс будет греться (теплый) при температуре в 50 градусов, воск уже достаточно мягкий и не будет сдерживать провод от вибрации 50Гц, хотя и будет выполнять функции диэлектрика. (Правда именно из-за вибрации и тре ния провода перетираются и получается замкнутый виток, который приводит к повреждениям уже в ходе эксплуатации ).

Для импульсных трансформаторов рекомендую в качестве пропитки использовать не скотч, а бумагу+ клей БФ-2. Этот клей прежде всего применяется в изготовлении катушек для динамиков. Но в импульсном трансформаторе тоже очень хорошо себя проявил. При неоднократной перегрузке не малейшего писка на частоте преобразования в 15КГц. Разматывая обмотки из каркаса, они снимались шлейфом ш ириной у 8 жил.

В ходе намотки периодически измеряем ток холостого хода, для этого необходимо подключать тестер последовательно с первичной обмоткой в режиме амперметра(читаем инструкцию на тестер). Измерять ток х.х. необходимо очень осторожно ведь работа от сети! Для избегания всяких ЧП рекомендую последовательно с первичкой включить лампочку на 220В, мощности порядка 40Вт. Лампочка будет гореть если число витков сильно мало, если транс намотан правильно то она должна быть лишь с розовым оттенком, что говорит о низком токе который через неё протекает. Трансформатор имеет большие пусковые токи, в момент запуска трансформатора перегрузки могут достигать 160 раз. Поэтому запуск трансформатора необходимо делать не непосредственно через тестер, а при помощи «перемычки» которую потом размыкаешь и ток начинает течь через тестер. Перемычку можно реализовать простым замыканием щупов тестера, которые потом разомкнуть. Каким должен быть ток холостого хода я напишу ниже.

Для трансформаторов у которых низкий ток потребления рекомендуется использовать резистор 10 или 100 Ом(2-5Вт) который включается последовательно с первичной обмоткой. Измерив падение напряжения на резисторе, при помощи закона ома перещетать ток. Такой метод является более предпочтительный нежели первый, но в тоже время более опасным при высоком токе потребления- резистор превращается в уголь за доли секунд!!!

О том как измерять ток х.х. я вкратце рассказал написал, теперь о значениях. Норму тока х.х. каждый определяет для каждого транса индивидуально, но обычно норма это до 50 мА при 230В, правда некоторые говорят что и 0,5А нормально. Чем ниже ток тем лучше! Чем ниже ток покоя, тем более форма тока х.х. похожа на синус. Если у вас ток х.х. от 20-50 то это терпимо, скажем так на троечку, от 10-20 это четыре, меньше 10мА эт явно пять. У маленьких ториков, ток будет маленьким из-за высокого сопротивления первичной обмотки, это нужно учитывать! Хотя как на меня мотать торы вручную меньше сотни ватт это зверство! Количество витков первичной обмотки в них достигает пару тысяч.

Намотаный мною трансформатор по моей методике имеет ток х.х. равным 11мА (при 4 слоях первички).

Если последовательно всё делать, то получится нечто похожее:

ПРОЦЕСС ТЕСТИРОВАНИЯ И ИЗМЕРЕНИЯ

О том как измерять ток х.х. я вкратце рассказал написал, теперь о значениях. Норму тока х.х. каждый определяется для каждого транса индивидуально, но обычно норма это до 50 мА при 230В, правда некоторые говорят что и 0,5А нормально. Чем ниже ток тем лучше! Чем ниже ток покоя, тем более форма тока х.х. похожа на синус. Если у вас ток х.х. от 20-50 то это терпимо, скажем так на троечку, от 10-20 это четыре, меньше 10мА эт явно пять. У маленьких ториков, ток будет маленьким из-за высокого сопротивления первичной обмотки, это нужно учитывать! Хотя как на меня мотать торы вручную меньше сотни ватт это зверство! Количество витков первичной обмотки в них достигает пару тысяч.

Очень полезно будет посмотреть форму тока холостого хода, в первичной обмотке при помощи осциллографа. НО!! это нужно делать в очень специальных условиях! Для этого необходим развязывающий трансформатор (220/220В), при том что индукция должна быть очень низкой что-б не вызывать дополнительных искажений формы "синуса". А также латр. Этот пункт теста рекомендую делать только очень опытным специалистам, последствия чреваты выгоранием осциллографа!!!

При использовании моих параметров намотки я «снимал» с такого транса 150 ватт на протяжении нескольких часов (дольше не было времени).

Изолируем первичную обмотку от вторичной.

После намотки необходимо числа слоев первичной обмотки мы подходим к моменту намотки вторички. Изолировать первичную обмотку от вторичной нужно очень тщательно.

В случае если вдруг сгорит вторичная обмотка то найхутшие последствия это выход из строя УНЧ. Но если в этот момент каким то образом вторичная обмотка «закоротит» на первичную то это уже опасность для жизнь! Ибо вторичная обмотка трансформатора в средней точке подключена к корпусу уся, представьте что когда вы крутите ручку регулировку громкости вас бьет током?! Неприятно поэтому заземление в розетке это не желаемая норма это необходимость, если вам дорого свое здоровье рекомендую уделить этому особое внимание… (Это было небольшое отступление).

Исходя из того что в розетках ОЧЕНЬ редко бывает НАСТОЯЩИЕ заземление, нужно максимально изолировать первичную обмотку от вторичной. Для этой операции можно применить уже накатанный метод и использовать скотч малярный. НО толщину слоя нужно как минимум удвоить, а лучше втрое. Притом пропитка клеем обязательно, клей придаст эластичности и дополнительный слой. Более лучшим вариантом будет применение специальных электротехнических лаков типа ЦАПОН (цвет не важен). В этом случае мы буквально вымачиваем тор в лаке, можно вплоть до того что замочить его! Лак будет более текучий если его подогреть, цапон при нагрев стает похожий на воду, и тем самым хорошо пропитывает обмотки изолируя и закрепляя их. Относительно первичной обмотки это одни из лучших мер, как на меня даже лучше парафина. Если вы собираетесь использовать пропитки то логично что использовать всякие «жёлтые-трансформаторные» скотчи противопоказанно, слой скотча просто не даст протечь глубже, в отличии от бумаги или лакоткани. Касательно «фиксации» и изолирования вторичной обмотки при помощи лаков категорически против (вдруг нужно перемотать вторичную, это будет сделать не возможно, кроме того смотанный провод только на металлолом.)

Если нет лака, а малярный-скотч не впечатляет. Очень даже неплохо будет изолировать обмотки фторопластом, этот материал супер изолятор! С виду он похож на плёнку белого слегка прозрачного цвета (фото ниже).

Основная особенность он термоустойчив к нагреванию (от минус -268 до +260 градусов). Когда мне нужно увеличить температуру жала паяльника, я просто обматываю его фторопластом не давая охлаждаться «телу» паяльника). Такие изюминки можно найти только в спец магазинах, хотя там рядом будет и лакоткань J, что тоже очень хорошо. Доступ к таким ассортиментам есть далеко не у всех, а если хочется… В таком случае рекомендую порыться в закромах. Фторопласт нужной нам формы можно достать в конденсаторах типа ФТ. Если аккуратно демонтировать алюминиевый корпус конденсатора то мы получим сердечник(сам конденсатор) из плотно намотанного так нам нужного фторопласта. Из конденсатора 0,022мкф можно смотать два куска по одному метру. Для изоляции первички нам потребуется около 5-6 метров. То бишь ищем мин 3 конденсатора. Фторопластовые конденсаторы очень хорошие на звук поэтому сначала подумайте, прежде чем их портить.

Учитывайте то что фторопласт не даст пропитаться обмотке транса подобно скотчу, поэтому если хотите пропитать парафином делайте это до изоляции обмоток фторопластом.

Об экранировании первичной обмотки от вторичной опишу немного позже, это уже скорее в раздел о высоких материях.

Финальная отделка транса и его крепёж.

Момент по намотке вторички я пропускаю, потому как он абсолютно аналогичный процессу намотки первички. Что касается финальной отделки то тут нужно понимать некоторые моменты.

Тороидальный трансформатор это замкнутый магнитопровод, лента сердечника намотана плотным рулоном после отожжённая в печи при вакууме. Намотка его осложнена необходимостью продевания провода в окно. Преимуществом его является то что сам сердечник находится внутри не испуская лишних помех, потому как их в момент подхватывают вторички транса. Таким образом сердечник транса- грубая железка находится внутри, а мягкий медный провод вскрытый хрупким лаком его (кусок железки) храбро защищает. Корпус тороида очень сильно подвержен повреждениям из вне. Падение тора из приличной высоты может его «убить» при помощи КЗ обмоток. Тогда как трансы типа ПЛ или Ш-образном железе наоборот защищают вторичную обмотку. Таким образом закрепить ТС-ник намного проще потому что его можно и нужно очень сильно сжимать металическими стяжками дабы уменьшить зазор- щель в сердечнике, и тем самым минимизировать потери и гул- вибрации пластин. Тороид закрепить намного сложнее, а точнее вариантов минимум. Прежде чем делать финальную отделку транса нужно четко представлять, как будет крепиться транс к корпусу.

И всё же, какие варианты изоляции-отделки:

Как вариант можно применить прозрачную ленту в которую была упакована петля размагничивания (кстати некоторые петли обматывались фторопластом, проверьте может вам повезло). В результате получаются очень красивые бублики (видно намотку, и красивый провод). Но повышенная температура трансформатора будет смягчать изоляции тем самым понижая уровень её прочности. Но это не главное! Когда вы изолируете трансформатор «пленкой» уровень теплоотдачи сильно падает, а тор может греться сильнее. Думаю все стараются покупать вещи из натуральных материалов, стараясь избегать синтетику, потому как в ней тело «не дышит» и человек потеет… так почему тор должен терпеть. Для этих вещей более лучше подходит применение киперной ленты (простынь нарезанная в полосы J). Для того что-б она была ещё прочнее я перед намоткой вымачиваю её в том клее- ПВА. Затем обматываю тор, во время намотки лишнее выдавливает. После засыхания образуется хороший жестковатый тряпочный каркас… Если вдруг нужно размотать достаточно просто ненадолго замочить. Также допускаются варианты обработки (по уже обмотанному трансформатору) краской как алкидной так и водоэмульсионной, или спец лаками.

Какие варианты крепежа:

Одним из явных способов крепления тора есть крепёж при помощи болта продетого через центр тора. При креплении таким образом учитывайте то что через болт, а потом днище корпуса, после по стенках корпуса, верхней крышке может образоваться виток сечение которого просто бешенное (в зависимости от диаметра крепёжного болта). Не в коем случае не крепите тор к днищу и верхней крышке, образуете замкнутый виток и спалите тор!

Кроме того в щели между крепежом и верхней крышкой будут наводиться помехи так как болт железный (магнетик). Чем меньше зазор тем выше уровень. Не редко говорят без крышки УНЧ играет всё отлично нет фона накрываю крышкой и появляется сумасшедший фон. Наводятся помехи, для избежание таких наводок необходимо применять крепёжный болт из материалов диамагнетиков, например хорошо себя показала латунь... (но не забываем об возможности образования витка через корпус).

Теперь нужно как то упереться в обмотку тора, при том площадь касания должна быть максимальна, для минимизации давления на провод. Я для этих целей использую заднюю шайбу и керно от магнитной системы динамиков, всё что нужно - это просверлить отверстие в керне и нарезать резьбу после получается очень хороший крепеж (фото ниже).

Также можно вырезать кусок текстолита или гитинакса толщиной от 3 мм, придать форму для максимального контакта «шайбы» с поверхностью тора. Нужно использовать прокладку между «шайбой» и телом тора для этого используйте резину, толщина которой должна быть минимум в два раза толще диаметра вторичной обмотки (почему догадайтесь сами), ложем и снизу и сверху. Изготавливая эту шайбу можно предусмотреть установку медных заклёпок для того чтобы зафиксировать выводы на «клеммной колодке». Если кому то непонятно есть фото такой конструкции.

Диаметр шпильки или болта продетого через центр тора вряд ли будет соответствует диаметру окна. Для того чтоб бублик не летал на этом болту как обруч на балерине необходимо его либо обмотать изолентой (до нужного диаметра) или можно применить толстую резину конусной формы. Такого рода резинку без проблем найдут автомобилисты например резинка из ВАЗ2107 реактивного стабилизатора или амортизатора, имеет нужно форму и стоит копейки.

Не редко в заводских версиях окно заполняют компаундом вставив туда втулку, за которую и крепят тор. В практике радиолюбители такое не применяется (обычно) потому что опять же разобрать тор не повредив провод не возможно. В домашних условиях такую заглушку можно реализовать при помощи эпоксидки.

Ещё один вариант крепежа «паук». По сути делается такая же крышка шайба только больших размеров. Форма её обычно квадратная крышка из железа или текстолита, края выступают за границы наружной части трансформатора. В этих углах просверлены отверстия и при помощи болтов притягивается к корпусу, таким образом вы не продеваете через центр болт и не создаете не доделанный виток через корпус УНЧ.

ОЧЕНЬ хорошо будет сделать железный «горшок с крышкой» из толстой стали (мин 2мм) для тороида, в который поместить тор и залить компаундом например парафином или воском (или той же эпоксидной смолой), хотя после эпоксидки его будет не разобрать. Таким образом решается не только проблема крепежа но также и экранирования от помех. (Фото подобной конструкции завалялось на компе, автора не помню но думаю он не обидится).

Немного об экранировании.

Между первичной и вторичной обмоткой очень хорошо будет разместить экранирующую обмотку. В идеале эта обмотка должна практически перекрывать все видимые части тороида, перекрывая магнитные потоки на пути от сердечника (первичной обмотки) ко вторичке. Один конец экранирующей обмотки должен быть «ввоздухе», а другой подключен на мекку(корпус) усилителя (иногда через резистор до 10 ом). Первый конец можно хорошо заизолировать и оставить внутри тора. Второй, тот который на землю корпуса, вывести при помощи многожильного гибкого провода.

В идеальном случае намотку нужно производить медной лентой шириной около 15-20мм, которая изолирована с обеих сторон лакотканью, изолентой или фторопластом, можно и скотчем малярным но очень аккуратно дабы не порвать и не сделать микро трещин (как в ленте так и в изоляторе), которые пробьет напряжением. Экранирование таким образом занимает очень много места и делает много пустот, которые ухудшают теплоотдачу, добавляя гул и «зря» отдаляют вторичку от сердечника. «Более» экономно будет если намотать экран проводом диаметром около 0,6мм. Но если будет просматриваться сердечник, то будьте уверены помехи пройдут через эти «окошки», то есть или мотаем как нужно очень плотно в несколько слоев, или не делаем пустую работу! Если есть возможность то можно сделать такой экран, однозначно хуже будет!

Гораздо лучше экранировать трансформатор по итогу намотки, то есть когда намотан полностью трансформатор (Хотя честно говоря нужно делить помехи по классам и виду, и отдельно рассматривать методы борьбы с ними). Идеально в таком случае будет использовать не медную ленту, а пермаллой. Хотя если на Вас смотрят кирпичными глазами при слове фторопласт, то о пермаллое можете мечтать;). Очень даже хорошо обвернуть трансформатор в несколько слоев трансформаторного железа, для этих целей подойдёт железо из любого трансформатора. (Я применяю сталь от старого сердечника из 2-х амперного латра).

Вот тор экранирован при помощи трансформаторной ленты, помещен в металлическую крышку и проварен в парафине, ток х.х. 1,5 мА, первички более 2500 витков, межслойная фторопласт, с последовательной проваркой в парафине. Делал в кружке + трансформаторная сталь, получилось очень даже хорошо (смотрите выше)! Этот тор использовал для работы в предварительном усилителе.

Делать горшок из алюминия не стоит, он не от чего не защитит. Делать нужно из толстой стали (не менее 2мм), и ещё очень хорошо изнутри дополнительно про экранировать медью (листовой толщиной около 1мм). Хотя сам таких вещей не делал (из медью), но авторитетные люди советовали.

В заключении о помехах из торов скажу, что тороиды очень редко генерируют помехи на оборудование, при том замечена особенность что фонят торы те которые не домотаны, имеют высокий ток х.х. ил завышенную индукцию… Поэтому если не пожадничать и намотать тороид из заниженной магнитной индукцией(увеличить число витков на вольт) то вы вряд ли столкнётесь с проблемой помех от трансформатора.

Планируется дополнить статью такими "изюминками"... пока что очень бегло...

Внутреннее сопротивление.

Все трансформаторы и источники энергии (блоки питания) имеют такой абстрактный параметр как внутреннее сопротивление. Как это понимать?! В случае с трансформатором это сопротивление будет равняться активному сопротивлению обмоток. Когда вы подключаете к трансу нагрузку, то протекающий ток и сопротивление обмоток создают просадку напряжения. Чтобы просадка по напряжению была минимальной необходимо увеличивать сечение проводника (снизив его сопротивление). Но в тоже время необходимо учитывать этот факт при эксплуатации, что габаритная мощность обмоток будет выше габаритной мощности сердечника, внимательно чтобы не перегрузить первичку.

Секционная намотка.

Заниженная индукция.

Неявный виток.

Экранирование и виды помех.

P.S. Моя первая статья да ещё и не законченная просьба помидорами не кидать.. Времени закончить никак нет, выкладываю то, что уже накатал очень давно... Сейчас эти бублик успешно работает в Натали 2012ЭА, в соответствующей ветке можете поискать фото, а вот и

Перемотка трансформаторов относится к сложным и трудоёмким видам технологических операций при ремонте этого типа электрооборудования. Все виды трансформаторов, выпускаемых промышленностью, обладают высокой надёжностью. Эти статические электромагнитные устройства не имеют подвижных частей, рассчитаны на длительный период эксплуатации. Наиболее частыми причинами отказов могут быть, в частности:

  • заводские дефекты (комплектующие, сборка)
  • критическое отклонение режимов работы
  • нарушение предписанных правил эксплуатации
  • ошибки при монтаже
  • естественное старение изоляционных материалов.

Как правило, в таких случаях происходит обрыв в обмотке трансформатора с его полным отказом. Другое проявление отказа замыкание межвитковое, на корпус, при котором падает мощность, происходит значительный нагрев обмоток. В перечисленных случаях трансформатору необходим капитальный ремонт с полной (частичной) разборкой активной части.

При выходе трансформатора из строя в большинстве случаев проводится его капитальный ремонт, а не замена. Это обусловлено экономическими причинами. Так, восстановление работоспособности при помощи перемотки катушки трансформатора обходится примерно на 30% дешевле, чем приобретение нового устройства. С технической стороны у ремонта силового трансформатора есть положительный аспект существует возможность модернизации трансформатора с изменением (улучшением) его потребительских свойств, технических параметров. Восстановленный трансформатор способен ещё прослужить в течение длительного периода.

Услугой перемотки трансформаторов в Москве , оказываемой нашей компанией, можно воспользоваться с целью ремонта, модернизации, изменения технических параметров различных видов этого электрооборудования. Под перемоткой подразумеваются такие разновидности работ: разборка трансформатора, его дефектовка, собственно перемотка катушек трансформатора, нанесение изоляции (пропитка лаком), общая сборка, испытания на стенде.

Технология перемотки импульсного трансформатора отличается от других видов. С целью уменьшения наводок и потерь в его конструкции используется сложная секционная обмотка. Перемотка только первичной или вторичной обмотки импульсного трансформатора невозможна необходимо перематывать сразу обе. При перемотке таких устройств следует строго соблюдать последовательность операций, малейшие отклонения могут существенно изменить его характеристики и даже привести к отказу.

В случае, когда возникает необходимость в изготовлении устройства с нестандартными параметрами напряжения и тока, производится тщательный расчёт и перемотка трансформатора подходящего (унифицированного) типа. При этом за основу берутся имеющиеся конструктивные элементы (каркас обмотки, сердечник) и заменяется старая обмотка на новую. К примеру, так можно осуществить перемотку трансформатора ТС 180 (вторичной обмотки), что равносильно изготовлению нового с заданными характеристиками.

В процессе перемотки трансформатора появляется возможность улучшить его технические и эксплуатационные параметры. Использование вместо дополнительной изоляции метода разделения обмоток на секции улучшает отвод тепла, а значит способствует повышению номинальной мощности трансформатора. Воздушное охлаждение обмотки будет тем эффективней, чем больше в ней отдельных секций. Применение эффективных способов намотки способно за счёт уменьшения сечения проводов снизить размеры обмоток (катушек), их массу и общую стоимость устройства.

Цены на перемотку трансформаторов

Тип Цена руб.
ТДМ 315 9800
ТДМ 317 10000
ТДМ 401,402 11400
ТДМ 500 11900
ВД 250 9870
ВД 306 СЭ 16520
ВД 306 СЭМ 20790
ВД 406 СЭ 17950
ВД 505 27916
ВДУ 350 41890
ВДУ 506 33000
ВДУ 601 37800
ТК - 75 кВт 20000
ТК - 100 кВт 25000
ТК - 150 кВт 30000

Лежало несколько трансформаторов без дела, и один из них (советский ТСА-30-1 , 30 Вт) решил использовать для универсального блока питания.

Поскольку его родные обмотки меня не устраивали (в основном по допустимому току), то решил убрать все его вторичные обмотки и намотать свои. Процесс сопровождался множеством "открытий" и ставящих в тупик вопросов, в процессе решения которых собралось много полезных деталей, которыми захотелось поделится с такими же новичками в этом деле, как и я.

В статье есть видео с подробностями некоторых этапов.

В чем мне здесь несправедливо повезло:

  1. Было свободное время и никто не мешал.
  2. Было много разных старых запасов, в т.ч. медного провода нужной длины.
  3. Много информации в Интернет (особенно по части теории).
Заратустра меня простил...

Видео перемотки трансформатора

Время разных этапов этого видео:

26 мин 28 сек - экран из фольги между первичкой и вторичкой

27 мин 52 сек - как правильно последовательно соединить обмотки

36 мин 43 сек - как узнать направление витков при помощи батарейки и мультиметра

44 мин 14 сек - расчет и намотка новой вторичной обмотки

1 ч 24 мин 20 сек - просадка сетевого напряжения и другие потери

1 ч 30 мин 01 сек - ток холостого хода

1 ч 32 мин 14 сек - пайка алюминия

1 ч 33 мин 42 сек - итог

Исследование модифицируемого трансформатора

Трансформатор ТСА-30-1 оказался намотан алюминиевым проводом (буква "А" как раз означает алюминий).

Информации о нем в Интернет, к счастью, было достаточно, хотя реальность не совпала с найденным на него паспортом. По паспорту одна из обмоток должна была быть вроде бы как медной (провод ПЭВ-1, не имеет буквы "А" в названии как другие - ПЭВА), и я планировал ее не трогать, но в процессе работы оказалось, что эта обмотка тоже алюминиевая. Поэтому я ее тоже удалил. Т.е. осталась нетронутой только первичная обмотка.

Экран из алюминиевой фольги

В процессе разборки, я из любопытства отмотал немного пропарафиненной бумаги над первичной обмоткой хотел на нее посмотреть, и натолкнулся на один виток фольги, который присутствовал между первичной обмоткой и вторичной. Этот виток фольги шел внахлест вместе с бумагой, т.е. он не замыкался, и только один из концов был отрезком медного провода соединен точечной сваркой с корпусом. Такое разделение используют в качестве экрана от помех, хотя по поводу его эффективности идут споры. Трансформатор советский и экран был заложен на заводе изготовителе - я его трогать не стал.

Направление витков

Витки на трансформаторе были намотаны на разных катушках (левой и правой) абсолютно одинаково (не зеркально, а именно одинаково). В дальнейшем стало понятно, что такая намотка сделана исключительно для удобства при последующем последовательном соединении обмоток с разных катушек. Видимо, по той же причине направление разных вторичных обмоток чередуется. В этом случае перемычки между обмотками при последовательном соединении просто удобнее ставить с одной стороны.

Металлические клеммы

Клеммы этого трансформатора очень трудно паять и лудить, поскольку они судя по-всему сделаны не из меди. Медь, чем лучше ее прогреешь, тем лучше она паяется, а у стальных (?) клемм прогрев приводит к скатыванию припоя в шарик и его перетеканию с клеммы на жало паяльника. Нужно ловить один из начальных моментов прогрева, чтобы припой остался на клемме в приемлемом виде.

В исследуемом трансформаторе было тяжело вдвойне, т.к. к металлическим клеммам был припаян алюминий. Пришлось использовать для пайки ортофосфорную кислоту с последующей промывкой водой и сушкой на радиаторе.

Первичная обмотка

В этом трансформаторе две катушки, и каждая обмотка разделена на две равные части, которые намотаны на каждую из двух катушек, с последовательным соединением. Считается, что так выше КПД - равномернее нагрузка.

Первичная обмотка состоит из двух по 110v на каждой катушке, соединенных последовательно перемычкой. Кроме того к каждой из обмоток последовательно присоединена небольшая добавочная обмотка, которую я отсоединил и использовал в своих целях (превратив таким образом во вторичную). Напряжение этой добавочной пары - около 36v (при 230v в сети).

Расчет вторичной обмотки трансформатора

Главная ошибка которую я допустил - расчитывал вторичную обмотку, исходя из напряжения в сети 220v. Между тем, напряжение в сети в пиковые нагрузки может проседать до 185v , - это почти на 20% ниже положенного! Поэтому, рассчитывая вторичную обмотку, надо исходить из этого показателя - не 220, а например 180. Иначе можно сильно просчитаться.

При расчете напряжения в трансформаторе блока питания следует учитывать:

  • Минимальное напряжение в сети ~180 V
  • Падение напряжения на диодном мосту - более 2 V
  • Падение напряжения на стабилизаторе - например 3 V
  • Просадку напряжения на вторичных обмотках при увеличении тока нагрузки (умножаем в среднем на 1,02 - 1,06, в зависимости от предельного тока)

На рисунке ниже - напряжение на одном элементе диодного моста KBU801 при токе 8 A доходит до 1,08 V. Т.е. на всем мосту падение напряжения будет более 2 V (клинуть мышью для увеличения).

Для уточнения количества витков на вольт во вторичной обмотке можно сделать временную контрольную обмотку (например 10 витков) и замерять выдаваемое ею напряжение (обязательно проверить напряжение в сети !). После чего разделить эти 10 (витков) на полученное напряжение. Таким образом получим количество витков на вольт.

ВАЖНО! Необходимо делить витки контрольной обмотки на ее напряжение, а не наоборот!

Пример .

Необходимо напряжение питания 20 V при максимальном постоянном токе 2 A.

Приблизительный подсчет выглядит примерно так:

20 + 3 = 23 V (падение напряжения на стабилизаторе)

23 + 2,2 = 25,2 V (падение напряжения на диодном мосту)

25,2 / 1,41 = ~17,3 V (переводим постоянное напряжение после диодного моста с конденсатором в необходимое переменное вторички)

17,3 * 1,06 = ~18,4 V (учитываем просадку напряжения в обмотке при максимальном токе нагрузки)

Если у нас идет например 4,4 витка на вольт при идеальных ~220 V, то при напряжении ~180 V в сети, нам понадобится

18,4 * 4,4 = 81 виток (для идеального напряжения ~220 V)

81 * (220/180) = 99 витков (для пикового падения напряжения до ~180 V)

Т.е. при ~220 V в сети, вторичная обмотка, содержащая 99 витков, будет выдавать около ~22,5 V
(а при просадке в сети до ~180 V, необходимые ~18,4 V)

Намотка

Я наматывал одновременно четыре параллельных провода . В результате получил четыре обмотки на каждой катушке в каждом ряду. Такое количество обмоток дает возможность, соединяя их последовательно (или параллельно), комбинировать необходимое напряжение (и ток).

Для лабораторного блока питания, используемого как инструмент при работе, это наиболее удобный вариант.

ВАЖНО! Для трансформатора имеющего сердечник в виде буквы "О", с двумя катушками справа и слева (такого, как рассматривается в этой статье), лучше всего каждую обмотку разделить на две (одинаковые), намотанные на разные катушки и соединенные последовательно. В этом случае будет выше КПД.

КСТАТИ при укладке на каркас, желательно слегка выгибать провод наружу перед каждым загибом на углах, чтобы витки потом не отходили в стороны от каркаса, образуя зазор при котором ухудшается плотность намотки. Я дополнительно еще придавливал провод сосновым бруском после каждого загиба на каркасе.

Расчет длины провода.
Перед намоткой необходимо замерять ширину каркаса и ширину окна между каркасами катушек (или каркасом и сердечником).
После этого необходимо рассчитать длину провода, и учесть его диаметр (с лаковой изоляцией!). Если намотка происходит без разборки сердечника, способом продевания провода в окно, то кусок/куски провода необходимой длины нужно будет "откусить" заранее, поэтому важно не ошибиться. Если провод достаточно тонкий (например менее ᴓ 0,5 мм) и длинный, то имеет смысл сделать тонкий челнок, на который намотать провод нужной длины - так его будет легче протаскивать в окно.

У меня здесь например внутренняя длина каркаса была 54 мм, и рассчитывая уложить 52 витка провода диаметром 1мм, я не угадал - последние пол витка мне пришлось делать частично внахлест (видимо я не учел толщину лаковой изоляции).
См. рисунок (для увеличения - нажать мышью):

При расчете возможностей окна нужно учитывать суммарную толщину изоляционных прокладок из бумаги или лакоткани между обмотками.

Для точного расчета необходимой длины нужно сделать контрольный виток и замерять его длину. При этом, в каждом следующем ряду виток будет немного длиннее (скажется толщина нижнего ряда и толщина междурядной изоляционной прокладки). Надо понимать, что например при 50 витках ошибка длины в один миллиметр на виток даст погрешность 5 см на 50 витках. Также надо учесть запас на выводы (я добавлял к общей длине кусков по 10 см с каждой стороны, т.е. всего 20 см. - этого было достаточно и на выводы, и на возможную ошибку).

Направление витков

Я с трудом нашел информацию про направление витков обмотки, - для этого пришлось освежить школьный курс физики (правило буравчика и т.п.). Хотя этот вопрос неизбежно возникает у новичка.

Главное правило - направление витков обмотки не имеет значения ... до тех пор пока возникает необходимость соединять обмотки друг с другом (последовательно или параллельно), либо в случае применения трансформатора в каких-нибудь устройствах, где важна фаза сигнала .


Не важно в каком направлении наматывать витки - важно как потом соединяются обмотки

Последовательное соединение обмоток

При последовательном соединении обмоток трансформатора, нужно мысленно представить, что одна обмотка является продолжением другой , а точка их соединения - это разрыв единой обмотки , в которой направление вращения витков вокруг сердечника сохраняется неизменным (и конечно не может разворачиваться в обратную сторону!).

При этом любой вывод обмотки может быть началом или концом, а само направление вращения может быть любым. Главное, чтобы это направление оставалось одинаковым у соединяемых обмоток.

При этом, движение соединяемых обмоток сверху вниз катушки или снизу вверх не имеет значения (см. рисунок - увеличивается кликом мыши).

В трансформаторах, у которых сердечник имеет форму буквы "О", и катушки намотаны на двух каркасах справа и слева, действует те же правила. Но для простоты понимания можно мысленно "разорвать" сердечник (сверху или снизу), и представить, что он выпрямляется в один стержень, - так легче будет понять, как одна обмотка переходит в другую с сохранением направления вращения витков (по или против часовой стрелки). См. рисунок ниже (рисунок увеличивается кликом мыши).

Параллельное соединение обмоток

При параллельном соединении важна длина провода в обмотках.

Даже при одинаковом количестве витков , разные обмотки могут иметь разную длину провода (та обмотка, которая ближе к середине - будет короче, а та что дальше - длиннее). В результате этого могут возникать перетоки .

Если предполагается параллельное соединение обмоток, то лучше мотать их одновременно в два (три, четыре...) провода. Тогда они будут одинаковой длины, что максимально исключит перетоки при их дальнейшем параллельном соединении.

Намотку в несколько проводов также используют при отсутствии провода нужного сечения (набирают большое сечение несколькими проводами меньшего).

Проверка направления витков при помощи батарейки и мультиметра

Если есть трансформатор, в котором нужно соединить две обмотки последовательно, но направление витков не видно и не известно, можно подать импульс постоянного тока от батарейки на одну из обмоток, наблюдая за скачком напряжения на другой обмотке.

Когда скачок напряжения в момент подключения батарейки на мультиметре (на второй обмотке) будет в "+", то точками соединения обмоток будут любые "+" и "-" разных обмоток (например "+" мультиметра и "-" батарейки, или наоборот). Два других конца при этом будут выводами этих обмоток после соединения (см. рисунок - кликнуть мышью для увеличения).

Направление витков на разных катушках

Повторюсь - не важно направление намотки, важно подключение обмоток.

Хотя есть одно "но". Если говорить об удобстве, то на таком типе трансформатора (с сердечником в виде буквы "О" и двумя катушками), удобнее правую и левую катушку мотать одинаково (не зеркально, а одинаково). В этом случае удобнее будет ставить перемычки при последовательном соединении двух обмоток на разных катушках - перемычки будут с одной стороны, и не через весь каркас сверху вниз.

См. рисунок (для увеличения - кликнуть мышью на рисунке):

Ток холостого хода

Если всё сделано правильно и сердечник трансформатора был собран (на заводе) качественно, то ток холостого хода (ток первичной обмотки, при полностью отключенной от нагрузки вторичной) должен быть в пределах допустимых норм.

В моем случае этот ток был 27 мА, что просто отличный показатель.

Амперметр надо включать в разрыв сетевого кабеля подключенного к первичной обмотке и, желательно соединив щупы мультиметра, включить трансформатор в сеть. После чего разъединить щупы и наблюдать показания. Соединять щупы перед включением в сеть необходимо для избежания выхода мультиметра из строя, т.к. у трансформатора может оказаться большой пусковой ток (в десятки раз выше номинального).

Трансформатор переводится с латинского как «превращатель», «преобразователь». Это электромагнитное устройство статического типа, предназначенное для преобразования переменного напряжения или электрического тока. Основу любого трансформатора составляет замкнутый магнитопровод, который иногда называют сердечником. На сердечник наматываются обмотки, которых может быть 2−3 и более в зависимости от вида трансформатора. Когда на первичной обмотке возникает переменное напряжение, внутри сердечника возбуждается магнитный ток. Он, в свою очередь, вызывает на остальных обмотках токовое переменное напряжение с точно такой же частотой.

Обмотки различаются между собой количеством витков, что определяет коэффициент изменения величины напряжения. Иными словами, если вторичная обмотка имеет в своём составе в два раза меньше витков, то на ней возникает переменное напряжение по величине в два раза меньшее, чем на обмотке первичной. Но мощность тока при этом не меняется. Это делает возможным работу с токами большой силы при относительно небольшом напряжении.

В зависимости от формы магнитопровода различают три вида трансформаторов:

Материалы пластин

Сердечники для трансформаторов изготавливают либо из металла, либо из феррита. Феррит, или ферромагнетик, — это железо с особым строением кристаллической решётки. Применение феррита увеличивает КПД трансформатора. Поэтому чаще всего сердечник трансформатора изготавливается именно из феррита. Существует несколько способов изготовления сердечника:

  • Из наборных металлических пластин.
  • Из намотанной металлической ленты.
  • В виде отлитого из металла монолита.

Любой трансформатор может работать как в повышающем, так и в понижающем режиме. Поэтому условно все трансформаторы делятся на две большие группы. Повышающие: на выходе напряжение больше, чем на входе. Например, было 12 В, стало 220 В. Понижающие: на выходе напряжение ниже, чем на входе. Было 220, а стало 12 вольта. Но в зависимости от того, на какую обмотку подаётся первичное напряжение, можно превратить в повышающий, который 10 А превратит в 100 А.

Тороидальный трансформатор своими руками

Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.

Преимущества и недостатки тора

Тор обладает несомненными достоинствами по сравнению с другими видами:

Простейший тор состоит из двух обмоток на своём кольцевидном сердечнике. Первичная обмотка соединяется с источником электрического тока, вторичная идёт к потребителю электроэнергии. Посредством магнитопровода происходит объединение обмоток и усиление их индукции. Когда включается питание, в обмотке первичной возникает переменный магнитный поток. Соединяясь со вторичной обмоткой, этот поток порождает в ней электромагнитную силу. Величина этой силы зависит от количества намотанных витков. Изменяя число витков, можно преобразовывать любое напряжение.

Расчет мощности тороидального трансформатора

Изготовление сварочного тороидального трансформатора в домашних условиях начинается с расчёта его мощности. Основным параметром будущего тора является ток, который будет подаваться на сварочные электроды. Чаще всего для бытовых нужд вполне достаточно электродов диаметром 2−5 мм. Соответственно, для таких электродов мощность тока должна быть в пределах 110−140 А.

Мощность будущего трансформатора рассчитывается по следующей формуле:

U — напряжение холостого хода

I — сила тока

cos f — коэффициент мощности, равный 0.8

n — коэффициент полезного действия, равный 0.7

Далее расчётная величина мощности с помощью соответствующей таблицы сверяется с размером площади сечения сердечника. Для домашних сварочных трансформаторов это значение, как правило, равно 20−70 кв. см в зависимости от конкретной модели.

После этого с помощью следующей таблицы подбирается количество витков провода по отношению к площади сечения сердечника. Закономерность простая: чем больше площадь сечения магнитопровода, тем меньшее количество витков наматывается на катушку. Непосредственное количество витков вычисляется по следующей формуле:

U — напряжение тока на первичной обмотке.

I — ток вторичной обмотки, или сварочный ток.

S — площадь сечения магнитопровода.

Количество витков на вторичной обмотке вычисляется по следующей формуле:

Тороидальный сердечник

Тороидальные трансформаторы имеют достаточно сложный сердечник. Лучше всего его изготавливать из специальной трансформаторной стали (сплав железа с кремнием) в виде стальной ленты. Лента предварительно свёртывается в габаритный рулон. Такой рулон, по сути, уже имеет форму тора.

Где взять готовый сердечник? Неплохой тороидальный сердечник можно обнаружить на старом лабораторном автотрансформаторе. В этом случае будет необходимо размотать старые обмотки и намотать новые на уже готовый сердечник. Перемотка трансформатора своими руками ничем не отличается от намотки нового трансформатора.

Особенности намотки тора

Первичная обмотка осуществляется медным проводом в стеклотканевой или хлопчатобумажной изоляции. Ни в коем случае нельзя использовать провода в резиновой изоляции. Для силы тока на первичной обмотке в 25 А наматывающийся провод должен иметь сечение 5−7 мм. На вторичной необходимо использовать провод значительно большего сечения — 30−40 мм. Это необходимо ввиду того, что на вторичной обмотке будет протекать ток значительно большей силы — 120−150 А. В обоих случаях изоляция провода должна быть термостойкой.

Для того чтобы правильно перемотать и собрать самодельный трансформатор, необходимо понимать некоторые детали процесса его работы. Нужно грамотно осуществлять намотку проводов. Первичная обмотка производится с помощью провода меньшего сечения, а количество самих витков здесь значительно больше, это приводит к тому, что первичная обмотка испытывает очень большие нагрузки и, как следствие, может очень сильно греться в процессе работы. Поэтому укладка первичной обмотки должна производиться особенно тщательно.

В процессе намотки каждый намотанный слой необходимо изолировать. Для этого используют либо специальную лакоткань, либо строительный скотч. Предварительно изоляционный материал нарезается на полоски шириной 1−2 см. Изоляцию укладывают таким образом, что внутренняя часть обмотки покрывается двойным слоем, а внешняя, соответственно, одним слоем. После этого весь изоляционный слой обмазывается толстым слоем клея ПВА. Клей в этом случае несёт двойную функцию. Он укрепляет изоляцию, превращая её в единый монолит, а также значительно уменьшает звук гудения трансформатора во время работы.

Приспособления для намотки

Намотка тора — сложный процесс, занимающий много времени. Для того чтобы как-то его облегчить, используют специальные приспособления для намотки.

  • Так называемый вилочный челнок. Предварительно на него наматывается необходимое количество провода, и затем посредством челночных движений производят последовательную намотку провода на сердечник трансформатора. Этот способ годится лишь в том случае, если наматываемый провод достаточно тонок и гибок, а внутренний диаметр тора настолько велик, что позволяет свободно протаскивать челнок. При этом намотка происходит достаточно медленно, поэтому если необходимо намотать большое количество витков, то придётся потратить на это очень много времени.
  • Второй способ более продвинутый и требует для своего осуществления специального оборудования. Но зато с его помощью можно намотать трансформатор практически любого размера и с очень большой скоростью. При этом качество намотки будет очень высоким. Приспособление называется «размыкаемый обод». Суть процесса состоит в следующем: намоточный обод аппарата вставляется в отверстие тора. После этого намоточный обод замыкается в единое кольцо. Затем на него наматывается необходимое количество обмоточной проволоки. И в заключение намоточный провод сматывается с обода аппарата на катушку тора. Такой станок можно изготовить в домашних условиях. Его чертежи находятся в свободном доступе в Интернете.

Намотка трансформатора своими руками сама по себе является несложной процедурой, однако требует существенных подготовительных работ. Некоторые люди, занимающиеся изготовлением различной радиоаппаратуры или силовых инструментов, имеют потребности в трансформаторах под конкретные нужды. Поскольку не всегда возможно приобретение определенного трансформатора под конкретные случаи, то многие наматывают их самостоятельно. Те, кто в первый раз изготавливает трансформатор своими руками, часто не могут решить проблемы, связанные с правильностью расчета, подбора всех деталей и технологии обмотки. Важно понимать, что собрать и намотать повышающий трансформатор и понижающий трансформатор – не одно и то же.

Основные части конструкции трансформатора.

Также существенно отличается и намотка тороидального устройства. Поскольку большая часть радиолюбителей или мастеров, которым требуется создать трансформирующее устройство для нужд своего силового оборудования, не всегда имеют соответствующие знания и навыки о том, как изготовить трансформирующее устройство, поэтому данный материал ориентирован именно на эту категорию людей.

Подготовка к намотке

Схема намотки сварочного трансформатора.

Первым делом необходимо произвести правильный расчет трансформатора. Следует вычислить нагрузку на трансформатор. Она вычисляется суммированием всех подключенных устройств (двигателей, передатчиков и т.д.), которые будут запитаны от трансформатора. Например, на радиостанции имеется 3 канала с мощностью 15, 10 и 15 Ватт. Суммарная мощность будет равна 15+10+15 = 40 Ватт. Далее берут поправку на КПД схемы. Так большинство передатчиков имеют КПД около 70% (точнее будет в описании конкретной схемы), поэтому такой объект следует запитать не 40 Вт, а 40/0,7 = 57,15 Вт. Стоит отметить, что и трансформатор имеет свой КПД. Обычно КПД трансформатора составляет 95-97 %, однако следует взять поправку на самоделку и принять КПД равном 85-90% (выбирается самостоятельно). Таким образом, требуемая мощность увеличивается: 57,15/0,9 = 63,5 Вт. Стандартно трансформаторы такой мощности весят около 1,2-1,5 кг.

Далее определяются с входными и выходными напряжениями. Для примера возьмем понижающий трансформатор с напряжениями 220 В входное и 12 В выходное, частота стандартная (50 Гц). Определяют количество витков. Так, на одной обмотке их количество равно 220*0,73 = 161 виток (округляется в большую сторону до целого числа), а на нижней 12*0,73 = 9 витков.

После определения количества витков приступают к определению диаметра провода. Для этого необходимо знать протекающий ток и плотность тока. Для установок до 1 кВт плотность тока выбирают в пределах 1,5 – 3 А/мм 2. сам ток примерно рассчитывают, исходя из мощности. Так, максимальный ток для выбранного примера будет составлять около 0,5-1,5 А. Поскольку трансформатор будет работать максимум со 100Вт нагрузки с естественным воздушным охлаждением, то плотность тока принимаем равной около 2 А/мм 2. Исходя из этих данных, определяем сечение провода 1/2 = 0,5 мм 2. В принципе сечения достаточно для выбора проводника, однако иногда требуется и диаметр. Поскольку сечение находится по формуле pd 2 /2, то диаметр равен корню из 2*0,5/3,14 = 0,56 мм.

Таким же образом находят сечение и диаметр второй обмотки (или, если их больше, то всех остальных).

Материалы для намотки

Намотка трансформатора требует тщательного подбора используемых материалов. Так, важное значение имеют практически все детали. Понадобятся:

Схема непрерывной обмотки трансформатора.

  1. Каркас трансформатора. Он необходим для изолирования сердечника от обмоток, также он удерживает катушки обмоток. Его изготовление осуществляется из прочного диэлектрического материала, который обязательно должен быть довольно тонким, чтобы на занимать место в интервалах («окно») сердечника. Часто для этих целей применяют специальные картонки, текстолит, фибры и др. Он должен иметь толщину минимально 0,5 м, а максимально 2 мм. Каркас необходимо приклеивать, для этого применяют обычные клеи для столярных работ (нитроклеи). Формы и габариты каркасов определяются формами и размерами сердечника. При этом высота каркаса должна быть чуть больше высоты пластин (высоты обмотки). Для определения его габаритов необходимо произвести предварительные замеры пластин и прикинуть примерно высоту обмотки.
  2. Сердечник. В качестве сердечника применяют магнитопровод. Лучше всего для этого подойдут пластины из разобранного трансформатора, поскольку они изготовлены из специальных сплавов и уже рассчитаны на определенное количество витков. Наиболее распространенная форма магнитопровода напоминает букву «Ш». При этом его можно вырезать из различных заготовок, имеющихся в наличии. Чтобы определиться с размерами, необходимо предварительно намотать провода обмоток. К обмотке, которая имеет наибольшее количество витков определяют длину и ширину пластин сердечника. Для этого берется длина обмотки + 2-5 см, и ширина обмотки + 1-3 см. Таким образом происходит примерное определение размеров сердечника.
  3. Провод. Здесь рассматривается обмоточный и провода для выводов. Лучшим выбором для намотки катушек трансформирующего устройства считаются медные провода с эмалевой изоляцией (типа «ПЭЛ»/«ПЭ»), этих проводов достаточно для намотки не только трансформаторов для радиолюбительских нужд, но и для силовых трансформаторов (например, для сварочного). Они имеют широкий выбор сечений, что позволяет приобрести провод нужного сечения. Провода, которые выводятся от катушек, должны иметь большее сечение и изоляцию из ПВХ или резины. Часто применяют провода серии «ПВ» с сечением от 0,5 мм 2. Рекомендуется брать на вывод провода с изоляцией разных цветов (чтобы не было путаницы при подключении).
  4. Подкладки изоляционные. Они необходимы для увеличения изоляции провода обмотки. Обычно в качестве прокладок применяется плотная и тонкая бумага (хорошо подходит калька), которую укладывают между рядами. При этом бумага должна быть целостной, без обрывов и проколов. Также такой бумагой оборачивают обмотки после того, как все они готовы.

Способы ускорения процесса

Схема самодельного приспособления для обмотки трансформаторов.

Многие радиолюбители часто имеют специальные примитивные устройства для осуществления намотки обмоток. Пример: примитивный станок для намотки обмоток представляет собой стол (часто подставку), на котором установлены бруски с вращающейся продольной осью. Длина оси выбирается в 1,5-2 раза больше длины каркаса катушек трансформирующего устройства (берется максимальная длина), на одном из выходов из брусков ось должна иметь ручку для вращения.

На ось надевается катушечный каркас, который стопорится с двух сторон ограничительными шпильками (они не дают каркасу перемещаться вдоль оси).

Далее на катушку закрепляется обмоточный провод с одного из концов и осуществляется намотка путем вращения ручки оси. Такая примитивная конструкция существенно ускорит намотку обмоток и сделает ее более точной.

Процесс намотки обмоток

Намотка трансформатора заключается в намотке обмоток. Для этого провод, который планируется использовать для обмоток, наматывается на любую катушку туго (для упрощения процесса). Далее сама катушка устанавливается либо на приспособление, указанное выше, либо наматывается «вручную» (это сложно и неудобно). После этого на катушке обмотки закрепляется конец обмоточного провода, к которому припаивают выводной провод (это можно сделать как вначале, так и в конце операции). Далее начинают вращение катушки.

При этом катушка не должна никуда смещаться, а провод должен иметь сильное натяжение для плотной укладки.

Намотка витков провода продольно должна производиться так, чтобы витки прилегали друг к другу максимально плотно. После того, как был намотан первый ряд витков по длине, его обматывают специальной изоляционной бумагой в несколько слоев, после чего наматывают следующий ряд витков. При этом ряды должны плотно прилегать друг к другу.

В процессе намотки следует контролировать количество витков и остановиться после намотки нужного количества. Важно, чтобы считались полные витки, не учитывая расход провода (т.е. второй ряд витков требует большего количество провода, однако наматывают количество витков).

Инструкция по намотке трансформаторов своими руками

Выбор бензиновых пил определяется несколькими критериями. Одним из них является шаг цепи бензопилы. Этот параметр определяет возможности оборудования скорость распиловки материалов и должен соответствовать мощности двигателя, только в этом случае удастся продлить срок эксплуатации инструмента и сократить удельный расход ГСМ.

При длительном использовании бензопилы ее отдельные узлы могут выходить из строя. Чаще всего необходим ремонт масляного насоса бензопилы. Обусловлено это тем, что в процессе пиления образуется большое количество стружки, которая может попадать в рабочий механизм.

К наступлению зимы можно попробовать сделать снегоуборщик из бензопилы своими руками. Это избавит мужчину от монотонного труда с использованием лопаты и ускорит процесс очистки в несколько раз.

Как намотать трансформатор: пошаговая инструкция

Трансформатор представляет собой агрегат, предназначенный для передачи электроэнергии с измененными показателями по сети к конечному потребителю. Это оборудование отличается определенной схемой. Трансформаторы могут понижать или повышать напряжение.

Со временем сердечнику может потребоваться перемотка. В этом случае радиолюбитель сталкивается с вопросом, как намотать трансформатор. Этот процесс занимает достаточно много времени и требует концентрации внимания. Однако сложного ничего в перемотке контура нет. Для этого существует пошаговая инструкция.

Конструкция

Трансформатор работает по принципу электромагнитной индукции. Он может иметь различную конструкцию магнитопривода. Однако одной из самых распространенных является тороидальная катушка. Ее конструкция была изобретена еще Фарадеем. Чтобы понимать, как намотать тороидальный трансформатор или прибор любой другой конструкции, необходимо изначально рассмотреть конструкцию его катушки.

Тороидальные устройства преобразуют переменное напряжение одной мощности в другую. Бывают однофазные и трехфазные конструкции. Они состоят из нескольких элементов. В состав конструкции входит сердечник из ферромагнитной стали. Есть резиновая прокладка, первичная, вторичная намотка, а также изоляция между ними.

Обмотка имеет экран. Изоляционным материалом покрыт и сердечник. Также применяется предохранитель, крепежные элементы. Чтобы соединить обмотки в единую систему, применяется магнитопривод.

Приспособление для намотки

Тороидальные трансформаторы могут быть разных видов. Это необходимо учитывать в процессе создания контура. Намотать трансформатор 220/220. 12/220 или прочие разновидности можно при помощи специального инструмента.

Чтобы упростить процесс, можно изготовить особый аппарат. Он состоит из деревянных стоек, которые скреплены между собой металлическим прутом. Он имеет форму рукояти. Этот вертел поможет быстро намотать контуры. Прутик должен быть не толще 1 см. Он будет пронизывать каркас насквозь. При помощи дрели выполнить этот процесс будет проще.

Дрель крепится на плоскости стола. Она будет находиться параллельно. Рукоять должна свободно вращаться. Прут вставляется в патрон дрели. Перед этим на металлический штырь нужно надеть колодку с каркасом будущего трансформатора. Прут может иметь резьбу. Этот вариант считается предпочтительнее. Колодку можно будет зажать с обеих сторон при помощи гайки, текстолитовыми пластинами или дощечками из дерева.

Другие инструменты

Чтобы намотать трансформатор 12/220, импульсный, ферритовый или прочие разновидности конструкций, необходимо подготовить еще несколько инструментов. Вместо представленной выше конструкции можно воспользоваться индуктором от телефона, устройством для перемотки пленки, машиной для шпули с ниткой. Вариантов существует множество. Они должны обеспечить плавность, равномерность процесса.

Также потребуется подготовить прибор для размотки. По своему принципу подобное оборудование похоже на представленные выше устройства. Однако при обратном процессе можно производить вращение без ручки.

Чтобы не считать число витков самостоятельно, следует приобрести специальный прибор. Он будет учитывать количество витков на катушке. Для этих целей может подойти обыкновенный водяной счетчик или велосипедный спидометр. При помощи гибкого валика выбранный прибор учета соединяется с наматывающим оборудованием. Можно сосчитать количество витков катушки устно.

Чтобы понять, как намотать импульсный трансформатор, необходимо произвести расчеты. Если же осуществляется перемотка уже существующей катушки, можно просто запомнить изначальное количество ее витков и приобрести провод идентичного сечения. В этом случае без расчетов можно обойтись.

Но если требуется создать новый трансформатор, нужно определить количество и тип материалов. Например, для устройства с рабочей нагрузкой от 12 до 220 В потребуется аппарат от 90 до 150 Вт мощностью. Взять магнитопривод можно, например, из старого телевизора. Сечение проводника определяется в соответствии с мощностью агрегата.

Количество витков катушек определяется для 1В. Этот показатель приравнивается к 50 Гц. Первичная (П) и вторичная (В) обмотки рассчитываются так:

  • П = 12 х 50/10 = 60 витков.
  • В = 220 х 50/10 = 1100 витков.

Чтобы определить в них токи, применяется следующая формула:

Полученный результат необходимо учесть при выборе материалов для создания нового прибора.

Изоляция слоев

Чтобы намотать ферритовый трансформатор или другую разновидность приборов, необходимо изучить еще один нюанс. Между определенными слоями проводников следует устанавливать изоляционные материалы. Чаще всего для этого применяется конденсатная или кабельная бумага. Все необходимые материалы можно приобрести в специализированных магазинах. Бумага должна обладать достаточной плотностью, быть ровной без просветов или отверстий.

Между отдельными катушками изоляционные слои создаются из более прочных материалов. Чаще всего применяется лакоткань. Ее с обеих сторон обкладывают бумагой. Это необходимо еще и для выравнивания поверхности перед проведением намотки. Если лакоткань найти не удалось, вместо нее можно использовать сложенную в несколько слоев бумагу.

Бумагу режут на полоски, ширина которых должна быть больше, чем контур. Они должны выходить за края обмотки на 3-4 мм. Лишний материал будет подворачиваться вверх. Это позволит хорошо защитить края катушки.

Чтобы понять, как правильно намотать трансформатор. следует уделить внимание каждой детали этого процесса. Подготовив изоляцию, провод и инструмент, следует сделать каркас. Для этого можно взять картон. Внутренняя часть каркаса должна быть больше стержня сердечника.

Для О-образного магнитопривода необходимо подготовить 2 катушки. Для сердечника Ш-образной формы потребуется один контур. В первом варианте круглый сердечник необходимо покрыть изоляционным слоем. Только после этого приступают к намотке.

Если же магнитопривод будет Ш-образный, каркас выкраивают из гильзы. Из картона вырезаются щетки. Катушку в этом случае необходимо будет завернуть в компактную коробку. Щетки надеваются на гильзы. Подготовив каркас, можно приступать к намотке проводника.

Пошаговая инструкция намотки

Намотать трансформатор своими руками будет достаточно просто. Для этого катушку с проводом следует установить в оборудовании для размотки. С нее будет снят старый провод. Каркас будущего трансформатора нужно поставить в оборудование для намотки. Далее можно производить вращательные движения. Они должны быть размеренные, без рывков.

В процессе такой процедуры провод со старой катушки будет перемещен на новый каркас. Между проводом и поверхностью стола расстояние должно составлять не менее 20 см. Это позволит положить руку и фиксировать кабель.

На стол нужно заранее выложить все необходимые инструменты и оборудование. Под рукой должна быть бумага изоляционная, ножницы, наждачная бумага, паяльник (включенный в сеть), ручка или карандаш. Одной рукой необходимо поворачивать ручку устройства для наматывания, а второй - проводник фиксировать. Нужно чтобы витки укладывались равномерно, ровно.

Рассматривая пошаговую инструкцию, как намотать трансформатор. следует уделить внимание последующим операциям. После укладывания проводника каркас потребуется заизолировать. Сквозь его отверстие необходимо продеть конец провода, выведенный из контура. Фиксация будет временной.

Опытные радиолюбители рекомендуют перед проведением намотки сначала потренироваться. Когда получится накладывать витки ровно, можно приступать к работе. Угол натяжения и провода должны быть постоянными. Каждый следующий слой не требуется мотать до упора. Иначе проводник может соскользнуть с предназначенного для него места.

В процессе наматывания витков нужно установить счетчик на нулевую отметку. Если же его нет, нужно проговаривать количество поворотов проволоки вслух. При этом следует максимально сконцентрироваться, чтобы не сбиться со счета.

Изоляцию нужно будет прижать кольцом из мягкой резины или клеем. Каждый последующий слой будет на 1-2 витка меньше, чем предыдущий.

Процесс соединения

Рассматривая, как намотать трансформатор. необходимо изучить процесс соединения проводов. Если при наматывании жила оборвется, следует произвести процесс спайки. Эта процедура может потребоваться и в том случае, если изначально предполагается создавать контур из нескольких отдельных кусков проволоки. Спайку выполняют в соответствии с толщиной провода.

Для проволоки толщиной до 0,3 мм необходимо очистить концы на 1,5 см. Затем их можно просто скрутить и спаять при помощи соответствующего инструмента. Если же жила толстая (более 0,3 мм), можно спаять концы напрямую. Скручивание в этом случае не потребуется.

Если же провод очень тонкий (менее 0,2 мм), его можно сварить. Их скручивают без проведения процедуры зачистки. Место соединения подносят в пламя зажигалки или спиртовки. В месте соединения должен появиться наплыв из металла. Место соединения проводов нужно обязательно изолировать лакотканью или бумагой.

Изучив процедуру, как намотать трансформатор, следует учесть еще несколько рекомендаций. Количество витков тонкого проводника может достигать несколько тысяч. В этом случае лучше использовать специальное счетное оборудование. Обмотку защищают сверху бумагой. Для толстого проводника наружная защита не требуется.

Чтобы оценить надежность изоляции, необходимо поочередно касаться выведенным проводником каждого выхода сетевых контуров. Процедуру проверки нужно выполнять очень осторожно. Следует исключить вероятность удара током.

Рассмотрев пошаговую инструкцию намотки трансформатора, можно отремонтировать старый или создать новый прибор. При четком следовании всем ее пунктам удается создать надежный, долговечный агрегат.

Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

  • Произошла ошибка; возможно, лента недоступна. Повторите попытку позже.

расчет и перемотка трансформатора

Перемотка трансформатора своими руками — дело нехитрое, но трудоемкое. Если он проверен в работе и известны все его параметры, как перемотать трансформатор — проблем нет. Сложнее, когда нашли в гараже старый агрегат. Как рассчитать обмотку трансформатора, придется напрячься. Можно и в сеть включить: сгорит — туда ему и дорога, все равно придется делать новый расчет и перемотку трансформатора своими руками, хотя провод мог бы и пригодиться. Только сначала надо прозвонить обмотки на обрыв и на замыкание на «железо», найти первичку. Она наматывается первой, и ее выводы ближе к сердечнику.
Не хотите рисковать — начнем разбирать этот старый агрегат. Перед разборкой замерьте площадь окна Н с *с и сечение (назовем его Q c ) стержня, на котором сидят обмотки. На Рис. 1 и 2 это стержень Сm . Площадь его сечения равна произведению ширины пластины на толщину всех пластин.

Определим мощность трансформатора. Я использую формулы, по которым когда-то учился. Они меня не подводили.
Для броневого трансформатора (Рис. 1) S 1бр = f(Q c /k) 2 ;
для стержневого типа (Рис. 2) S 1ст = 2f(Q c /k) 2 ;
где S 1бр и S 1ст — полная мощность трансформаторов броневого типа и стержневого соответственно, ВА; k — постоянная для воздушных трансформаторов (6-8), f — частота тока, Гц.
Для наглядности расчетов возьму «железо» от балды. Например, стержневого типа с сечением стержня Q c = 2*4 = 8см 2 .
Первичная мощность S 1ст = 2*50(8/7) 2 = 100*1,30 = 130ВА .
Что выдаст вторичка? Принимая во внимание потери, обусловленные кпд трансформатора (Таблица 1. ), находим полную мощность вторичной обмотки S 2ст = S 1ст *кпд = 130*0,91 = 118ВА .
Это мощность, из которой будем выжимать все соки. Сделаем зарядное устройство для 12-вольтовых аккумуляторов. Выходное напряжение должно быть порядка 16V. Почему не 14V, как требует зарядка? Когда подключится диодный мост, на выходе вольта 2 потеряется, и чтобы не навешивать массу электролитических конденсаторов для компенсации. лучше подстраховаться. По радиолюбительской формуле определяем число витков на 1V:
w o = 50/Q c ; w o = 50/8 = 6,25 .
На 16V требуется 6,25*16 = 100 витков. Учитывая потери, рекомендуется увеличить число витков на 5-10%. Получаем вторичную обмотку w 2 = 100*1,1 = 111 витков.
Находим число витков первичной обмотки: w 1 = w o *220 = 6,25*220 = 1375 витков.
Выбираем проволоку для намотки. Если хотим взять с аппарата максимальную мощность, посмотрим, какой ток получим. При 16V предельный ток вторичной обмотки I 2 = S 2ст /U 2 = 118/16 = 7,3A .
Для зарядки аккумулятора 65 А*ч нужен ток 6,5А, значит, наш ток в 7,3А справится.
Ток первичной обмотки I 1 = S 1ст /U 1 = 130/220 = 0,6A .
Определяем сечение провода первичной обмотки: s 1 = I 1 /пл.т. = 0,6/2,3 = 0,261мм 2 .
Сечение провода вторичной обмотки: s 2 = I 2 /пл.т. = 7,3/2,3 = 3,17мм 2 .
пл.т. — плотность тока из таблицы 1. Я взял 2,3 потому, что наш трансформатор больше 100Вт, но меньше 250Вт.
По таблице 2. выбираем проволоку для первичной обмотки диаметром 0,6мм (c изоляцией 0,64мм), для вторичной — 2мм (с изоляцией 2,065мм). Влезем ли с нашей перемоткой в окно?
Площадь окна Н с *с в моем трансформаторе по приблизительным подсчетам должна быть порядка 2000мм 2. Площадь, занимаемая первичной обмоткой: (0,64мм) 2 *1375витков = 563мм 2 ; вторичной: (2,065мм) 2 *111витков = 473мм 2 . Общая площадь — 1036мм 2. Кажется, влезли — мотаем.
Напоследок несколько советов:
1. Витки должны быть плотными, без зазоров и прослаблений. Иначе при их вибрации во время работы будет стираться лаковая изоляция: межвитковое замыкание неминуемо. Для гарантии обмотку можно искупать в лаковой ванне.
2. Перед сборкой «железа» пластины тщательно очистить наждачкой от старого лака, чтобы плотнее прилегали друг к другу во избежание дребезжания трансформатора.
3. Как перемотать трансформатор, если нет провода, соответствующего расчетам? Можно взять меньший, но при этом снизить ток вторичной обмотки. Ток имеющегося провода определяется исходя из наших формул. Например, для провода сечением 0,159мм 2 I 2 = 0,159*пл.т. Обмотка с толстым проводом может не поместиться в окно, еще раз просчитайте площадь заполнения. Если не хватило провода — добавьте, место спайки делайте не внутри, а выведите наружу.
4.Если провод на вторичку тонкий, а хочется взять большой ток, намотайте этим проводом две одинаковые вторички. Только не перепутайте начало и конец обмоток. соединять начало с началом, конец с концом. Можно сразу намотать двойным проводом, но это ювелирная работа, ведь витки должны ложиться ровно и плотно, чтоб трансформатор меньше гудел.
5. Изолируйте первичную обмотку от вторичной лакотканью, чтобы при нарушении изоляции не пощупать 220V.
6. При сборке пластин, если есть необходимость, использовать только деревянный инструмент.
7. Если хотите узнать число витков первички или вторички в исправном трансформаторе, намотайте поверх обмоток витков 10 провода, замерьте на его выводах напряжение. Например, на этих 10 витках напряжение 2V. На 1V приходится 5 витков. Значит, на 220V намотано 1100 витков. А чтобы получить, например, 24V, надо намотать: 5вит.*24V = 120 витков.
Теперь знаете, как перемотать трансформатор своими руками?

Таблица 1.