Сила притяжения зарядов формула. Закон кулона простыми словами



Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке. Точечный заряд – это электрический заряд , когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.

Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона . Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональная произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эта сила взаимодействия называется кулоновская сила , и формула закона Кулона будет следующая:

F = k · (|q 1 | · |q 2 |) / r 2

Где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.

Коэффициент k в СИ принято записывать в форме:

K = 1 / (4πε 0 ε)

Где ε 0 = 8,85 * 10 -12 Кл/Н*м 2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.

Для вакуума ε = 1, k = 9 * 10 9 Н*м/Кл 2 .

Сила взаимодействия неподвижных точечных зарядов в вакууме:

F = · [(|q 1 | · |q 2 |) / r 2 ]

Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:

F = · [(|q 1 | · |q 2 |) / r 2 ] = k · (1 /π) · [(|q 1 | · |q 2 |) / r 2 ]

Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).

Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.

Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:

F 1,2 = -F 2,1

Кулоновская сила является центральной силой. Как показывает опыт , одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.

Вектор силы F 2,1 , действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).

Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.

Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.

В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с , на одном конце которой закреплён металлический шарик а , а на другом противовес d . Верхний конец нити закреплён на вращающейся головке прибора е , угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарик b , неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шариками a и b при различных их положениях.

Рис. 1.10. Опыт Кулона (крутильные весы).

При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.

Зако́н Куло́на - это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

    точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

    их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца , действующая на другой движущийся заряд;

    взаимодействие в вакууме .

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - ); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер , а единица заряда - кулон - производная от него. Величина ампера определена таким образом, что k = c 2 ·10 −7 Гн /м = 8,9875517873681764·10 9 Н ·м 2 /Кл 2 (или Ф −1 ·м). В СИ коэффициент k записывается в виде:

где ≈ 8,854187817·10 −12 Ф/м - электрическая постоянная .

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Валентина:

Вы спасли нашего сына от увольнения! Дело в том что недоучившись в институте, сын пошел в армию. А вернувшись, восстанавливаться не захотел. Работал без диплома. Но недавно начали увольнять всех, кто не имеет «корочки. Поэтому решили обратиться к вам и не пожалели! Теперь спокойно работает и ничего не боится! Спасибо!

Известно, что каждое заряженное тело имеет электрическое поле. Можно также утверждать, что если есть электрическое по-ле, то есть заряженное тело, которому при-надлежит это поле. Итак, если рядом нахо-дятся два заряженных тела с электриче-скими зарядами, то можно сказать, что каж-дое из них находится в электрическом поле соседнего тела. А в таком случае на первое тело будет действовать сила

F 1 = q 1 E 2 ,

где q 1 — заряд первого тела; E 2 — напря-женность поля второго тела. На второе те-ло, соответственно, будет действовать сила

F 2 = q 2 E 1 ,

где q 2 — заряд первого тела; E 1 — напря-женность поля второго тела.

Электрически заряженное те-ло взаимодействует с элект-рическим полем другого заря-женного тела.

Если эти тела небольшие (точечные), то

E 1 = k . q 1 / r 2 ,

E 2 = k . q 2 / r 2 ,

Силы, действующие на каждое из взаимодействующих заря-женных тел, можно рассчи-тать, зная лишь их заряды и расстояние между ними.

Подставим значения напряженности и получим

F 1 = k . q 1 q 2 / r 2 и F 2 = k . q 2 q 1 / r 2 .

Значение каждой силы выражается лишь через значение зарядов каждого тела и рас-стояние между ними. Таким образом, опре-делять силы, действующие на каждое тело, можно, пользуясь лишь знаниями об элект-рических зарядах тел и расстоянии между ними. На этом основании можно сформу-лировать один из фундаментальных законов электродинамики — закона Кулона .

Закон Кулона . Сила, действующая на неподвижное то-чечное тело с электрическим зарядом в поле другого неподвижного точечного тела с элект-рическим зарядом, пропорциональна произве-дению значений их зарядов и обратно пропор-циональна квадрату расстояния между ними.

В общем виде значение силы, о которой идет речь в формулировке закона Кулона , можно записать так:

F = k . q 1 q 2 / r 2 ,

В формуле для расчета силы взаимодей-ствия записаны значения зарядов обоих тел. Поэтому можно сделать вывод, что по мо-дулю обе силы равны. Тем не менее, по направлению — они противоположные. В слу-чае если заряды тел одноименные, тела от-талкиваются (рис. 4.48). Если заряды тел раз-ноименные, то тела притягиваются (рис. 4.49). Окончательно можно записать:

F̅ 1 = - F̅ 2 .

Записанное равенство подтверждает спра-ведливость III закона динамики Ньютона для электрических взаимодействий. Поэтому в одной из распространенных формулиро-вок закона Кулона говорится, что

сила взаи-модействия двух заряженных точечных тел пропорциональна произведению значений их за-рядов и обратно пропорциональна квадрату расстояния между ними.

Если заряженные тела находятся в ди-электрике, то сила взаимодействия будет зависеть от диэлектрической проницаемости этого диэлектрика

F = k . q 1 q 2 / ε r 2 .

Для удобства расчетов, базирующихся на законе Кулона, значение коэффициента k записывают иначе:

k = 1 / 4 πε 0 .

Величина ε 0 называется электрической по-стоянной . Ее значение вычисляется в соот-ветствии с определением:

9 . 10 9 Н.м 2 /Кл 2 = 1 / 4πε 0 ,

ε 0 = (1 / 4π) . 9 . 10 9 Н.м 2 /Кл 2 = 8,85 . 10 -12 Кл 2 /Н.м 2 . Материал с сайта

Таким образом, закон Кулона в общем случае можно выразить формулой

F = (1 / 4πε 0 ) . q 1 q 2 / ε r 2 .

Закон Кулона является одним из фунда-ментальных законов природы. На нем бази-руется вся электродинамика, и не отмечено ни единого случая, когда бы нарушался закон Кулона . Существует единственное ог-раничение, которое касается действия за-кона Кулона на различных расстояниях. Счи-тается, что закон Кулона действует на рас-стояниях больше 10 -16 м и меньше несколь-ких километров.

При решении задач необходимо учиты-вать, что закон Кулона касается сил вза-имодействия точечных неподвижных заря-женных тел. Это сводит все задачи к задачам о взаимодействии неподвижных заряженных тел, в которых применяется два положения статики:

  1. равнодействующая всех сил, действую-щих на тело, равна нулю;
  2. сумма моментов сил равна нулю.

В подавляющем большинстве задач на применение закона Кулона достаточно учи-тывать лишь первое положение.

На этой странице материал по темам:

  • Элзапишите формулу закона кулона

  • Закон кулона реферат

  • Доклад по физике на тему закон кулона

  • § 2. Взаимодействие зарядов. Закон Кулона

    Электрические заряды взаимодействуют между собой, т. е. одноименные заряды взаимно отталкиваются, а разноименные притягиваются. Силы взаимодействия электрических зарядов определяются законом Кулона и направлены по прямой линии, соединяющей точки, в которых сосредоточены заряды.
    Согласно закону Кулона, сила взаимодействия двух точечных электрических зарядов прямо пропорциональна произведению количеств электричества в этих зарядах, обратно пропорциональна квадрату расстояния между ними и зависит от среды, в которой находятся заряды:

    где F - сила взаимодействия зарядов, н (ньютон);
    Один ньютон содержит ≈ 102 г силы.
    q 1 , q 2 - количество электричества каждого заряда, к (кулон);
    Один кулон содержит 6,3 · 10 18 зарядов электрона.
    r - расстояние между зарядами, м ;
    ε а - абсолютная диэлектрическая проницаемость среды (материала); эта величина характеризует электрические свойства той среды, в которой находятся взаимодействующие заряды. В Международной системе единиц (СИ) ε а измеряется в (ф/м ). Абсолютная диэлектрическая проницаемость среды

    где ε 0 - электрическая постоянная, равная абсолютной диэлектрической проницаемости вакуума (пустоты). Она равна 8,86 · 10 -12 ф/м .
    Величина ε, показывающая, во сколько раз в данной среде электрические заряды взаимодействуют между собой слабее, чем в вакууме (табл. 1), называется диэлектрической проницаемостью . Величина ε есть отношение абсолютной диэлектрической проницаемости данного материала к диэлектрической проницаемости вакуума:

    Для вакуума ε = 1. Диэлектрическая проницаемость воздуха практически близка к единице.

    Таблица 1

    Диэлектрическая проницаемость некоторых материалов

    На основании закона Кулона можно сделать вывод, что большие электрические заряды взаимодействуют сильнее, чем малые. С увеличением расстояния между зарядами сила их взаимодействия значительно слабее. Так, с увеличением расстояния между зарядами в 6 раз уменьшается сила их взаимодействия в 36 раз. При сокращении расстояния между зарядами в 9 раз увеличивается сила их взаимодействия в 81 раз. Взаимодействие зарядов также зависит от материала, находящегося между зарядами.
    Пример. Между электрическими зарядами Q 1 = 2 · 10 -6 к и Q 2 = 4,43 · 10 -6 к , расположенными на расстоянии 0,5 м , помещена слюда (ε = 6). Вычислить силу взаимодействия указанных зарядов.
    Решение . Подставляя в формулу значения известных величин, получим:

    Если в вакууме электрические заряды взаимодействуют с силой F в, то, поместив между этими зарядами, например, фарфор, их взаимодействие можно ослабить в 6,5 раз, т. е. в ε раз. Это значит, что сила взаимодействия между зарядами может быть определена как отношение

    Пример. Одноименные электрические заряды взаимодействуют в вакууме с силой F в = 0,25 н . С какой силой будут отталкиваться два заряда, если пространство между ними заполнено бакелитом? Диэлектрическая проницаемость этого материала равна 5.
    Решение . Сила взаимодействия электрических зарядов

    Так как один ньютон ≈ 102 г силы, то 0,05 н составляет 5,1 г .