Как строить пьезометрический график тепловой сети. Системы и источники электроснабжения (3 сем). Гидравлический расчет тепловых сетей

При проектировании и эксплуа­тации тепловых сетей наряду с дав­лением широко пользуются также другой единицей гидравлического потенциала - напором. Напор представляет собой давление, выра­женное в линейных единицах (обыч­но метрах) столба той жидкости, ко­торая передается по трубопроводу.

Напор и давление связаны сле­дующей зависимостью

Н = р / ρg, (1)

где H - напор, м;

р - давление теплоносителя, Па;

ρ – плотность теплоносителя, кг/м 3 ;

Аналогичной зависимостью свя­заны между собой падение давления и потеря напора в сети или рас­полагаемый перепад давлений и располагаемый напор (разность на­поров) в сети

ΔΗ= Δр / ρg или h = R / ρg,

где ΔΗ- потеря напора или распо­лагаемый напор, м; р - падение давления или рас­полагаемый перепад дав­лений Па; h и R - удельная потеря напора (безразмерная величина) и удельное падение давле­ния, Па / м.

Полный напор отсчитывается от одного общего условного горизонтального уровня.

Напор, отсчитанный не от услов­ного, общего для всей сети горизон­тального уровня, а от уровня про­кладки оси трубопровода в данной точке, называется пьезометри­ческим напором или пьезо­метрической высотой .

При проектировании и эксплуа­тации разветвленных тепловых сетей, когда приходится учитывать взаимное влияние многочисленных факторов, определяющих гидравли­ческий режим сети: геодезический профиль района, высотность або­нентских зданий, потерю напора в тепловой сети и або­нентских установках и т. д., широко используется пьезометриче­ский график . На пьезометриче­ском графике в определенном мас­штабе нанесены рельеф местности, высоты присоединенных зданий, ве­личина набора в сети. По пьезомет­рическому графику легко опреде­лить напор и распола­гаемый напор в любой точке сети и абонентской системы.

Пьезометрический график благо­даря наглядности позволяет легко ориентироваться в гидравлическом режиме тепловых сетей и местных систем. Проектирование сети без учета пьезометрического графика, особенно в условиях сложного про­филя, может привести к нерацио­нальным схемам присоединения або­нентов, неоп­равданному сооружению насосных подстанций и усложнению эксплуа­тации всей системы теплоснабжения в целом.

Пьезометрический график (график напоров) может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным величинам падений давления на участках сети. На графике в выбранном масштабе нанесены профиль трассы тепло­вой сети; высоты отопительных систем, присоединенных к тепловой сети, условно равные высотам зданий; величины напоров насосов и в любой точке сети при статическом и динамическом режимах.



Условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зда­ний совпадают с отметкой земли. Высшее положение воды в отопи­тельной системе совпадает с верхней отметкой здания.

График строят по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах.

Пример построения графика показан на рис. 1.

Рис. 1. Пьезометрический график двухтрубной водяной тепловой сети.

По горизонталь­ной оси нанесены длины отдельных участков сети, показано взаимное расположение по горизонтали характерных потребителей тепла. Все отсчеты напоров производят от уровня I-I, соответствующего обычно отметке оси сетевых насосов, принимаемой за геодезическую отметку «0».

Под графиком показана принципиальная схема тепловой сети, для которой ведут построения.

Точка А характеризует местоположение источника теплоснаб­жения, вернее, расположение сетевого насоса. Точка L соответствует расположению последнего потребителя тепла, высота отопительной системы которого равна в вертикальном масштабе отрезку LM. Потребитель тепла удален от источника тепла на расстояние, равное в горизонтальном масштабе отрезку AL в метрах.

В точке D имеется ответвление к потребителю Е; высота отопитель­ной системы потребителя характеризуется отрезком EN в вертикальном масштабе. Насос в точке А создает напор в подающей магистрали Н Н, напор в обратной магистрали Н В. Разность напоров Н Н – Н В = Н С на­зывается напором , развиваемым сетевым насосом.

Изменение напоров в подающей магистрали на графике показано наклонной линией А 1 L 1 .

Превышение точки А 1 над L 1 представляет потери напора в подаю­щем теплопроводе от точки А до точки L. Величина потерь напора определяется гидравлическим расчетом и составляет в подающем теплопроводе ΔH 1 = H Н - H L1 , м, и в обратном теплопроводе

ΔH 2 =H L2 – H В, м.

Линия А 2 L 2 показывает характер изменения напоров в обратной магистрали. Изменение напоров в теплопроводах ответвления пока­зано линиями D 1 E 1 и D 2 E 2 .

Разность напоров в подающем и обратном теплопроводах назы­вается располагаемым напором в точке сети.

Напор в подающем теплопроводе в точке К: Н 1 = H К1 - Z, м, где Z - геодезическая высота трубопровода в точке К, м.

Напор в обратном теплопроводе: H 2 = H К2 -Z, м.

Располагаемый напор в точке К:

ΔН К = Н 1 – Н 2 = (Н К1 – Z) – (Н К2 – Z) = Н К1 – Н К2 , м. (2)

По аналогии с формулой (2) располагаемый напор в точке L равен ΔН L1 - Н L2 .

Изменение напоров в теплопроводах, показанных линиями А 1 L 1 и L 2 А 2 , соответствует динамическому режиму системы теплоснабже­ния, т. е. при работающем сетевом насосе и движении теплоносителя. При остановке сетевого насоса и прекращении циркуляции теплоно­сителя напоры в обеих магистралях уравниваются и устанавливаются по верхней отметке наиболее высокой и высоко расположенной системы отопления, присоединенной к тепловой сети по зависимой схеме (при температуре воды до 100 °С).

На рис. 1 линия статического напора показана пунктирной го­ризонтальной линией А 3 М.

При гидравлическом расчете па­ровых сетей профиль паропровода можно не учитывать вследствие ма­лой плотности пара. Падение давления на участке паропровода принимается равным разности дав­лений в концевых точках участка.

Для предупреждения ошибочных решений следует до проведения ги­дравлического расчета водяных се­тей наметить возможный характер пьезометрического графика и, ори­ентируясь по нему, выбрать допу­стимые пределы потерь напора, не вызывающие усложнения схемы тепловой сети и абонентских вводов. На основании технико-экономиче­ского расчета следует лишь уточ­нить значение потерь напора, не выходя за пределы, намеченные по пьезометрическому графику. Такой порядок проектирования позволяет учесть технические и технико-эконо­мические особенности проектируе­мого объекта.

При построении пьезометрического графика в период проекти­рования должны соблюдаться следующие условия:

1. Напоры в присоединенных к сети системах теплопотребителей не должны быть больше допустимых. В отопительных абонентских системах допускаемый напор не должен превышать 60 м. Напор 60 м является предельным для обратной магистрали; в подающей магист­рали он может быть выше 60 м, так как его всегда можно уменьшить (сдросселировать) в пределе до величины напора в обратной магист­рали.

2. Обеспечение избыточного (выше атмосферного) напора во всех точках сети и абонентских систем для предупреждения подсоса воз­духа.

3. Обеспечение напоров, соответствующих температуре насыще­ния, в сети для предупреждения вскипания воды. Ни в одной из точек сети напор в подающей магистрали не должен быть ниже статиче­ского напора, т. е. пьезометрический график подающей магистрали не должен пересекать линию статического напора.

4. Минимальное значение напора перед сетевыми насосами должно быть не менее 5-10 м.

5. Напор в местных системах потребителей не должен быть ниже статического самих местных систем (статический напор равен высоте системы). В противном случае возможно опорожнение верхней части систем и засасывание воздуха.

6. В точках присоединения потребителей располагаемые напоры должны соответствовать потерям напора в местных системах при про­пуске теплоносителя в расчетных количествах.

Все эти требования должны вы­полняться как во время работы си­стемы, т. е. при циркуляции воды, так и при прекращении циркуля­ции, т. е. в статическом состоянии системы.

Значение напоров и их распределение по сети дает исходный ма­териал для выбора схем присоединений потребителей тепла. Наиболь­шее значение режим напоров в сети имеет для выбора схем присоеди­нений к тепловой сети систем отопления.

Распределение давлений в тепловых сетях удобно изображать в виде пьезометрического графика, который дает наглядное представление о давлении или напоре в любой точке тепловой сети и поэтому обеспечивает большие возможности учета многочисленных факторов (рельеф местности, высота зданий, особенности абонентских систем) при выборе оптимального гидравлического режима.

Пьезометрические графики разрабатываются для зимних и летних расчетных условий. Проектирование открытых систем теплоснабжения связано с необходимостью построения пьезометрических графиков для отопительного сезона с учетом максимальных водоразборов из подающих и отдельно из обратных трубопроводов. Давление, выраженное в линейных единицах измерения, называется напором давления или пьезометрическим напором . В системах теплоснабжения пьезометрические графики характеризуют напоры, соответствующие избыточному давлению, и они могут быть измерены обычными манометрами с последующим переводом результатов измерения в метры.

Рис. 5.3. Пьезометрический график двухтрубной тепловой сети с зависимыми схемами присоединения систем отопления: 1 –сетевой насос; 2 – перемычка сетевого насоса;
3 – станционный водонагреватель; 4 – расширительный бак

Рассмотрим пьезометрический график упрощенной системы теплоснабжения (рис. 5.3). Циркуляция воды в замкнутой сети осуществляется насосом 1. Расширительный бак 4, уровень воды в котором поддерживается постоянным, присоединен к обводной линии циркуляционного насоса 2. В реальных условиях вместо расширительного бака обычно устанавливают подпиточный насос. Если сетевой насос не работает, то напоры во всех точках системы теплоснабжения определяются уровнем воды в расширительном баке. При таком статическом состоянии системы теплоснабжения пьезометрический график представляет собой горизонтальную линию s – s, проведенную на уровне поверхности воды в расширительном баке. Напор в любой точке сети определяется величиной вертикального отрезка между данной точкой и линией s – s.



При динамическом режиме, когда сетевой насос включается в работу, пьезометрический график изобразится линией K 1 A 1 B 1 C 1 C 2 B 2 K 2 для тепловой сети и линией K 1 NK 2 – для перемычки. Если за плоскость отчета напоров принять уровень О – О, то отрезок Н с будет характеризовать статический напор в тепловой сети.

При работе сетевого насоса отрезок Н п характеризует напор в нагнетательном патрубке насоса, а отрезок Н вс – напор у всасывающего патрубка насоса. Разность Н сн = Н п – Н вс соответствует напору, создаваемому сетевым насосом, который и расходуется на преодоление гидравлических сопротивлений при движении теплоносителя. Отрезки DН т, DН п DН о составляют потери напора соответственно в подогревательной установке 3, подающей и обратной магистралях сети; DН 1 , DН 2 – располагаемые напоры для абонентских систем I и II.

В системах отопления, присоединяемых к тепловой сети по зависимой схеме с элеваторным смешением, располагаемые напоры (DН 1 , DН 2) расходуются в основном в водоструйных элеваторах. Потери напора в самих отопительных системах не превышают 1 – 2 м. Пренебрегая этой величиной, можно считать, что при работе сетевых насосов системы отопления и, в частности, наименее прочные их элементы – радиаторы, испытывают давление со стороны обратной магистрали. Отрезки Н р,1 и Н р,2 характеризуют напоры в радиаторах нижних этажей при динамическом режиме системы теплоснабжения; Н c,1 , Н с,2 – то же, при остановке сетевых насосов.

Следует обратить внимание, что остановка сетевого насоса по-разному влияет на изменения давлений в различных абонентских системах. Если у абонента I остановка насоса уменьшает напор в радиаторе (Н c,1 <Н p,1), то в радиаторе абонента II напор увеличивается (Н c,2 <Н p,2).

При построении пьезометрического графика нужно выполнять следующие условия:

1. Давление в непосредственно присоединяемых к сети абонентских системах не должно превышать допускаемого как при статическом, так и при динамическом режиме. Для радиаторов систем отопления максимальное избыточное давление должно быть не более 0,6 МПа, что соответствует примерно напору в 60 м.

2. Максимальный напор в подающих трубопроводах ограничивается прочностью труб и всех водоподогревательных установок.

3. Напор в подающих трубопроводах, по которым перемещается вода с температурой более 100 °С, должен быть достаточным для исключения парообразования. В связи с неравномерным нагреванием воды в отдельных трубках водогрейных котлов температуру воды в них для определения давления, обеспечивающего невскипание, следует принимать на 30 °С выше расчетной температуры сетевой воды.

4. Для предупреждения кавитации напор во всасывающем патрубке сетевого насоса должен быть не меньше 5 м.

5. В точках присоединения абонентов следует обеспечить достаточный напор для создания циркуляции воды в местных системах. При элеваторном смешении на абонентском вводе располагаемый напор должен быть, не меньше 10 – 15 м. Наличие подогревателей горячего водоснабжения при двухступенчатой схеме требует увеличения напора до 20 – 25 м.

6. Уровни пьезометрических линий как при статическом, так и при динамическом режиме следует устанавливать с учетом возможности присоединения большинства абонентских систем по наиболее дешевым зависимым схемам. Статическое давление также не должно превышать допускаемого давления для всех элементов системы теплоснабжения. При определении статического давления возможность вскипания воды в подающих трубопроводах, как правило, можно не учитывать.

Пример построения пьезометрического графика для системы теплоснабжения (рис. 5.3) с учетом соблюдения вышеизложенных требований приведен на рис. 5.4. Сначала строится профиль местности по трассе теплопроводов. На профиле в принятом масштабе наносят высоты зданий. При построении пьезометрических графиков условно принимают, что оси трубопроводов совпадают с поверхностью земли. Такая условность вполне оправдана для подземных прокладок, когда заглубление трубопроводов не превышает 1 – 2 м. В этом случае фактические напоры в трубопроводах будут больше на величину их заглубления. Для воздушных прокладок, наоборот, напоры в трубопроводах будут меньше, и это обстоятельство следует учитывать при определении минимальных давлений, обеспечивающих невозможность вскипания воды в подающих или невозможность возникновения вакуума в обратных трубопроводах.

Статический напор (линия s – s) устанавливают из условия заполнения сетевой водой по возможности всех абонентских систем с запасом в 3 – 5 м по отношению к самому высокому абоненту. Проведем на 60 м ниже линии s – s горизонталь z – z. Тогда в зоне, расположенной между этими линиями, при статическом режиме напор не превышает 60 м и не опасен для чугунных радиаторов систем отопления.

Предельное положение пьезометрической линии для обратной магистрали при динамическом режиме (рис. 5.4, линия К 2 В 2 С 2) намечается из следующих соображений: а) максимальный пьезометрический напор не должен превышать 60 м в радиаторах нижних этажей систем отопления, присоединяемых по элеваторной схеме; б) для защиты систем отопления от опорожнения пьезометрическая линия должна быть не менее чем на 3 – 5 м выше зданий.

Действительный уклон пьезометрической линии определяется по данным гидравлического расчета. Потери напора в местной системе концевого абонента I соответствуют отрезку С 1 С 2 . Отложив от точки С 1 потери напора в подающей магистрали, проведем для этой магистрали пьезометрическую линию С 1 В 1 А 1 . Точка К 1 располагается выше точки А 1 на величину потери напора в станционной подогревательной установке.

Пьезометрическая линия подающей магистрали должна удовлетворять следующим условиям: а) максимальный напор не должен превышать допустимого для труб и подогревательных установок; б) минимальный напор не должен допускать вскипания воды.

Невозможность вскипания воды на пьезометрическом графике может быть отражена двумя способами.

По первому способу от каждой точки поверхности земли откладывают напор Н к, принимаемый по ниже приведенным данным:

Расчетная температура сетевой воды, о С 120 130 140 150 160 170 180

Максимальный напор, м 10 20 30 40 55 72 93

и проводят линию RLM, называемую линией невскипания.

Если пьезометрическая линия А 1 В 1 С 1 расположится выше линии RLM и нигде ее не пересекает, то вода в трубах кипеть не будет.

По второму способу ниже линии А 1 В 1 С 1 на величину Н к проводят линию NP. Во всех точках, расположенных ниже линии NP, кипение невозможно, так как напор в этих точках больше Н к. Только в местах пересечения линии NP с подающим трубопроводом и во всех точках, расположенных выше линии NP, при расчетных температурных условиях наступит парообразование. Второй способ наглядно иллюстрирует те уровни, до которых во избежание парообразования можно поднимать воду с расчетной температурой выше 100°С. В частности, у абонентов I и II сетевую воду из условия невскипания можно поднять только до отметок соответственно y 1 , у 2 .

Если перечисленные выше условия не могут быть выполнены для всех абонентов, то отдельные местные системы необходимо присоединять по независимой схеме.

При неровном рельефе местности, когда значительное количество потребителей теплоты выходит за границу нормального гидравлического режима, система теплоснабжения разбивается на независимые по давлению зоны.

При проектировании и эксплуатации разветвленных тепловых сетей, для учета взаимного влияния профиля района, высот присоединяемых зданий, потерь давления в тепловой сети и абонентских установках, используется график. По пьезометрическому графику легко определяется давление и располагаемый перепад давлений в любой точке тепловой сети.

На основании пьезометрического графика выбирается схема присоединения абонентских установок, подбираются повысительные насосы, подпиточные насосы и автоматические устройства.

График давления разрабатывается для состояний покоя системы (гидростатический режим) и динамического режима.

Динамический режим характеризуется линией потерь напора в подающем и обратном трубопроводе, на основании гидравлического расчета сети, и определяется работой сетевых насосов.

Гидростатический режим поддерживается подпиточными насосами в период отключения сетевых насосов.

К водяным тепловым сетям присоединены абоненты, имеющие различные тепловые нагрузки. Они могут быть расположены на различных геодезических отметках и иметь различную высоту. Системы отопления абонентов могут быть рассчитаны на работу с различными температурами воды. В этих случаях необходимо заранее определять давления или напоры в любой точке тепловой сети.

Для этого строится пьезометрический график или график напоров тепловой сети, на котором в определенном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в тепловой сети; по нему легко определить напор (давление) и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

Кроме определения напоров в любой точке сети и по пьезометрическому графику можно проверить соответствие предельных давлений в тепловой сети

Изм.
Лист.
№ докум.
Подпись
Дата
Лист.
ВГЭТК.401Т.14.КП.46д.ПЗ
прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединения потребителей к тепловой сети и подбирается оборудование тепловых сетей (сетевые и подпиточные насосы, автоматические регуляторы давления и т. п.). График стоится при двух режимах работы тепловых сетей - статическом и динамическом.

Статический режим характеризуется давлениями в сети при неработающих сетевых, но включенных подпиточных насосах. Циркуляция воды в сети отсутствует. При этом подпиточные насосы должны развивать напор, обеспечивающий невскипаемость воды в тепловой сети.

Динамический режим характеризуется давлениями, возникающими в тепловой сети и в системах потребителей теплоты при работающих сетевых насосах, обеспечивающих циркуляцию воды в системе.

Пьезометрический график разрабатывается для основной магистрали теплосети и протяженных ответвлений. Он может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках тепловой сети.

График строится по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах, на горизонтальной -длины участков тепловой сети.

При построении условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зданий совпадают с отметкой земли. Высшее положение воды в отопительных системах совпадает с верхней отметкой здания.

Полный напор в нагнетательном патрубке сетевого насоса соответствует

Изм.
Лист.
№ докум.
Подпись
Дата
Лист.
ВГЭТК.401Т.14.КП.46д.ПЗ
отрезку Н н. Полный напор на обратном коллекторе источника теплоснабжения соответствует отрезку Н o .

Напор, развиваемый сетевым насосом, соответствует вертикальному отрезку Н С =Н H -Н 0 , потери напора в теплоподготовительной установке источника теплоснабжения (в сетевых подогревателях или водогрейных котлах) соответствуют вертикальному отрезку Н Т. Таким образом, напор на подающем коллекторе источника теплоснабжения соответствует вертикальному отрезку Н ит =Н с - .

Методика построения графика:

1) Строится магистраль, условно ее отметка совпадает с отметкой земли;

2) На профиле трассы в принятом масштабе вычерчиваются высоты присоединения зданий;

3) Строится линия статического напора, из условий заполнения водой отопительных установок и создания в их верхних точках избыточного давления (запас напора 5 м выше самого высокого здания);

4) Пьезометрическое давление в обратном трубопроводе тепловой сети не должно быть меньше 5 м в. ст. во избежание образования вакуума и подсоса воздуха.

График выполняется на миллиметровке формата 297 х 420. Для построения применять следующие масштабы:

Горизонтальный – 1:1000, 1:500; вертикальный – 1см – 5м.

Определить располагаемый напор для каждой УТ (тепловой камеры):

Нрасп. = Нподающ.тр. – Нобратн.тр.


Подбор тепловой изоляции

Тепловая изоляция подвергается непосредственному воздействию наружных температур, влажности воздуха, давлению. В неблагоприятных условиях находится тепловая изоляция при подземной канальной прокладке и особенно при безканальной.

Назначение тепловой изоляции

Уменьшение потерь тепла в окружающую среду;

Получение определенной температуры на изолируемой поверхности;

Предохранение от внешней коррозии;

Тепловая изоляция применяется при всех видах прокладки тепловых сетей независимо от способа прокладки и температуры теплоносителя.

Таблица 4 – Подбор тепловой изоляции


Коэффициент линейного расширения трубных сталей, мм/м;

Длина рассматриваемого участка, м;

Максимальная температура стенки трубы, т.е. принимается равной максимальной температуры теплоносителя, ºС ()

Максимальная температура стенки трубы, принимаемой равной расчётной температуры наружного воздуха для отопления (t 2 = t 0)

Для обеспечения правильной работы компенсаторов и самокомпенсации трубопроводы делятся неподвижными опорами на отдельные участки, независимые один от другого в отоплении теплового удлинения.

На каждом участке трубопровода, ограниченном сменными неподвижными опорами, предусматривается установка компенсатора или самокомпенсации.

При расстановке по трассе неподвижных опор нужно иметь ввиду следующие:

Неподвижные опоры устанавливаются в первую очередь в местах ответвлений трубопроводы;

При расстановке неподвижных опор (НО) на прямых участках исходят из допустимых расстояний между неподвижными опорами в зависимости от диаметра труб, типа компенсаторов и параметров теплоносителя.

Расчёт трубопроводов на компенсацию тепловых удлинений с гибкими

параметрами (П – образными) и при самокомпенсации производят на допускаемое изгибающее компенсационное напряжение труб ГОСТ 1074 – 01, которое можно принять:

Для П – образных компенсаторов, при Т ≤ 150 ºС, G доп – 11 кг/мм 2

Для расчёта участков самокомпенсации при Т ≤ 150 ºС, G доп – 8 кг/мм 2

Расчётный участок

Диаметр труб d у = 133*4

Расстояние между неподвижными опорами, м

Максимальная температура теплоносителя t = 130 ºC

Расчётная температура воздуха t 0 = - 34 ºC

Расчётная схема


Тепловое удлинение определяется по формуле:

(20)

м

ºC t 0 = - 34 ºC

Для увеличения компенсирующей способности П – образного компенсатора и компенсационных напряжений в трубопроводе следует предусматривать предварительную растяжку в размере 50% теплового удлинения.

223,696 = 111,848 мм

При спинке компенсатора равной половине высоты компенсатора т.е.

В – спинка компенсатора, м;

Н – вылет компенсатора, м

И величина (по монограмме на листах VI.9 VI.12) находим вылет компенсатора Н и силу упругой деформации.

В тепловых сетях для характеристики гидравлического потенциала наряду с давлением р используется напор Н. Под напором понимается давление, выраженное в линейных единицах, как правило, в метрах столба жидкости, перемещаемой по трубопроводу, т.е.

где H – напор, м; р – давление теплоносителя, кгс /м2 или Н/м2; γ – удельный вес теплоносителя, кгс/м3 или Н/м3.

Аналогичную формулу можно записать и для потерь напора:

где– падение давления или располагаемый перепад давлений.

Удельная линейная потеря напора, отнесенная к единице длины трубопровода, определяется но формуле

Формула (9.2) линейного падения давления с учетом соотношения (9.3) примет вид

Формулы (9.5), (9.6) с учетом соотношения (9.7) приводятся к единой формуле

Гидравлический режим тепловой сети определяют многие факторы: геодезические отметки высот местности, высота зданий, потеря давления (напора) на участках сети и проч. Все эти факторы в определенном масштабе отражаются на пьезометрических графиках. При использовании таких графиков различают полный напор, который отсчитывается от одного общего для всей сети условного горизонтального уровня, и пьезометрический напор (пьезометрическая высота), отсчитываемый от уровня прокладки оси трубопровода в данной точке.

В качестве конкретного примера рассмотрим пьезометрический график двухтрубной сети, приведенной на рис. 9.1. На нем величинапредставляет напор, развиваемый сетевыми насосами ТЭЦ или котельной.

Исходя из условия надежной работы, к режиму давлений водяных тепловых сетей предъявляются следующие требования.

1. Избыточные давления (выше атмосферного) в обратных трубопроводах, а следовательно, и в присоединенных к сети отопительных системах не должны превышать допустимых величин (6 ати для чугунных отопительных приборов). Отметим, что в прямых трубопроводах обеспечение допустимых давлений в отопительных приборах потребителей теплоты обеспечивается с помощью дросселирующих диафрагм (шайб). Отмстим, что обратным называется трубопровод, по которому теплоноситель возвращается от потребителей к источнику теплоты.

Рис. 9.1.

– линия пьезометрических напоров прямого трубопровода; – линия пьезометрических напоров обратного трубопровода; – геодезическая отметка высоты местности; I–I – условная плоскость отсчета, имеющая геодезическую отметку высоты, равную нулю (); Н 1 пьезометрическая высота на входе в прямой трубопровод; Н 2 пьезометрическая высота на выходе из обратного трубопровода; ΔH 1 – располагаемый напор на входе в теплосеть; Н 3 – полный напор в прямом трубопроводе у потребителя, расположенного в точке С местности; ΔH 2 – пьезометрическая высота в прямом трубопроводе у потребителя в точке С; ΔH 1 пьезометрическая высота в обратном трубопроводе у потребителя в точке С; Н 4 – полный напор в обратном трубопроводе потребителя в точке С; ΔН 2 – располагаемый напор у потребителя в точке С ; Н 5 – пьезометрическая высота в конечной точке прямого трубопровода; Н 6 – пьезометрическая высота на входе в обратный трубопровод; ΔН 3 – располагаемый напор в конечной точке теплосети; L – длина трубопроводов теплосети; SS – линия статического напора

  • 2. Для предупреждения подсосов воздуха избыточные давления в тепловой сети и присоединенных отопительных системах должны быть не ниже 0,5 ати.
  • 3. Из условия обеспечения бескавитационной работы сетевых насосов давление во всасывающей камере должно быть не ниже 0,5 ати.
  • 4. Перепад давлений между прямым и обратным трубопроводами (располагаемый перепад давлений) не должен быть ниже допустимой величины (не менее 20 м). Этот перепад должен превышать потерю напора в отопительных системах потребителей. Если это условие невыполнимо (например, при отоплении высотных зданий), то на абонентских вводах устанавливаются повысительные насосные.
  • 5. Необходимо обеспечивать невскипание воды во всех трубопроводах тепловой сети и системах отопления абонентов. Ввиду того что температура воды в прямом трубопроводе может превышать 100°С, при некотором давлении, большим атмосферного, может произойти ее вскипание. В связи с этим на пьезометрический график наносится линия статического давления SS. Это линия, характеризующая давление вскипания жидкости в прямом трубопроводе при заданной температуре теплоносителя как при его движении, так и в неподвижном состоянии. Следовательно, давление в прямом трубопроводе не должно быть ниже статического давления. Так как температура воды в обратном трубопроводе всегда меньше 100°С, по условиям вскипания жидкости давление здесь не должно быть ниже атмосферного. В практике эксплуатации тепловых сетей для обеспечения невскипания жидкости и предупреждения подсосов воздуха избыточное давление в обратном трубопроводе не должно быть ниже 0,5 ати.

При отсутствии повысительных и понизительных насосных внутри теплосети пьезометрическая линия прямого трубопровода всегда нисходящая. Наклон этой линии к плоскости отсчета I–I определяется потерями напора по длине трубы, которые, в свою очередь, зависят от рода теплоносителя, его расхода, шероховатости стенок трубопровода и других факторов. Пьезометрическая линия обратного трубопровода от точки В до точки В 2 всегда восходящая. Наклон этой линии зависит от тех же факторов, которыми определяется наклон пьезометрической линии прямого трубопровода.

При малых расходах теплоносителя в коротких трубопроводах большого диаметра потери напора по их длине будут незначительны. Пьезометрические линии прямого и обратного трубопроводов в этом случае будут представлять линии, практически параллельные условной плоскости отсчета I–I.

Напор H 2 в точке В задается подпиточными насосами станции (котельной). Создаваемый ими напор является базовым. Он не изменяется при любых изменениях параметров внутри сети, в том числе и при изменении наклона пьезометрической линии ВВ 2 обратного трубопровода, величина которого определяется факторами, отмеченными выше.

5.5. Пьезометрический график

При проектировании и эксплуатации разветвленных тепловых сетей широко используется пьезометрический график, на котором в конкретном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в сети; по нему легко определить напор () и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

На рис. 5.5 приведены пьезометрический график двухтрубной водяной системы теплоснабжения и принципиальная схема системы. За горизонтальную плоскость отсчета напоров принят уровень I - I , имеющий горизонтальную отметку 0; , график напоров подающей линии сети; , – график напоров обратной линии сети; – полный напор в обратном коллекторе источника теплоснабжения напор, развиваемый сетевым ом 1; Н ст полный напор, развиваемый подпиточным ом, или, что то же, полный статический напор тепловой сети; Н к полный напор в точке К на нагнетательном патрубке а 1; потеря напора сетевой воды в теплоподготовительной установке III ;

Н n 1 – полный напор в подающем коллекторе источника теплоснабжения: . Располагаемый напор сетевой воды на коллекторах . Напор в любой точке тепловой сети, например в точке 3, обозначается следующим образом: – полный напор в точке 3 подающей линии сети; полный напор в точке 3 обратной линии сети.

Если геодезическая высота оси трубопровода над плоскостью отсчета в этой точке сети равна Z 3 , то пьезометрический напор в точке 3 подающей линии , а пьезометрический напор в обратной линии . Располагаемый напор в точке 3 тепловой сети равен разности пьезометрических напоров подающей и обратной линий тепловой сети или, что одно и то же, разно сти полных напоров .

Располагаемый напор в тепловой сети в узле присоединения абонента Д:

Потеря напора в обратной линии на этом участке тепловой сети

При гидравлическом расчете паровых сетей профиль паропровода можно не учитывать вследствие малой плотности пара. Падение давления на участке паропровода принимается равным разности давлений в концевых точках участка. Правильное определение потери напора, или падения давления в трубопроводах, имеет первостепенное значение для выбора их диаметров и организации надежного гидравлического режима сети.

Для предупреждения ошибочных решений следует до проведения гидравлического расчета водяной тепловой сети наметить возможный уровень статических напоров, а также линии предельно допустимых максимальных и минимальных гидродинамических напоров в системе и, ориентируясь по ним, выбрать характер пьезометрического графика из условия, что при любом ожидаемом режиме работы напоры в любой точке системы теплоснабжения не выходят за допустимые пределы. На основе технико-экономического расчета следует лишь уточнить значения потерь напора, не выходя за пределы, намеченные по пьезометрическому графику. Такой порядок проектирования позволяет учесть технические и экономические особенности проектируемого объекта.

Основные требования к режиму давлений водяных тепловых сетей из условия надежности работы системы теплоснабжения сводятся к следующему:

1) не разрешается превышение допустимых давлений в оборудовании источника, тепловой сети и абонентских установок. Допустимое избыточное (сверх атмосферного) в стальных трубопроводах и арматуре тепловых сетей зависит от применяемого сортамента труб и в большинстве случаев составляет 1,6–2,5 МПа;

2) обеспечение избыточного (сверх атмосферного) давления во всех элементах системы теплоснабжения для предупреждения кавитации ов (сетевых, подпиточных, смесительных) и защиты системы теплоснабжения от подсоса воздуха. Невыполнение этого требования приводит к коррозии оборудования и нарушению циркуляции воды. В качестве минимального значения избыточного давления принимают 0,05 МПа (5 м вод. ст.);

3) обеспечение не вскипания сетевой воды при гидродинамическом режиме системы теплоснабжения, т.е. при циркуляции воды в системе.

Во всех точках системы теплоснабжения должно поддерживаться , превышающее насыщенного водяного пара при максимальной температуре сетевой воды в системе.