История изобретения электрического конденсатора. История создания конденсатора

Объясняя, что такое конденсатор, мы должны четко представлять физические основы работы и конструкцию этого незаменимого элемента каждого мало-мальски серьезного электронного устройства.

К недостаткам танталовых конденсаторов можно отнести чувствительность к пульсациям тока и перенапряжениям, а также относительную дороговизну этих изделий.

Силовые конденсаторы, как правило, используются в системах высокого напряжения. Они широко применяются для компенсации потерь в линиях электропередач, а также для улучшения коэффициента мощности в промышленных электроустановках. Изготавливаются из высококачественной металлизированной пропиленовой пленки с применением специальной пропитки нетоксичным изоляционным маслом.

Могут иметь функцию самоликвидации внутренних повреждений, что придает им дополнительную надежность и увеличивает срок службы.

Керамические конденсаторы имеют в качестве материала диэлектрика керамику. Отличаются высокой функциональностью по рабочему напряжению, надежностью, низкими потерями и дешевизной.

Диапазон емкостей их варьируется от нескольких пикофарад до примерно 0,1 мкФ. В настоящее время являются одним из наиболее широко используемых типов конденсаторов, используемых в электронном оборудовании.

Серебряные слюдяные конденсаторы пришли на смену широко распространенным ранее слюдяным элементам. Обладают высокой стабильностью, герметичным корпусом и большой емкостью на единицу объема.

Широкому применению серебряно-слюдяных конденсаторов мешает их относительная дороговизна.

У бумажных и металлобумажных конденсаторов обкладки изготовляются из тонкой алюминиевой фольги, а в качестве диэлектрика используется специальная бумага, пропитанная твердым (расплавленным) или жидким диэлектриком. Применяются в низкочастотных цепях радиоустройств при больших токах. Отличаются относительной дешевизной.

Для чего нужен конденсатор

Имеется целый ряд примеров использования конденсаторов в самых разнообразных целях. В частности, их широко применяют для хранения и и цифровых данных. используются в телекоммуникационной связи для регулировки частоты и настройки телекоммуникационного оборудования.

Типичным примером их применения является использование в источниках питания. Там эти элементы сглаживания (фильтрацию) выпрямленного напряжения на выходе этих устройств. Они также могут быть использованы в для генерации высокого напряжения, многократно превышающего входное напряжение. Конденсаторы широко применяются в различного рода преобразователях напряжения, устройствах бесперебойного питания для компьютерной техники и т.д.

Объясняя, что такое конденсатор, нельзя не сказать, что этот элемент может служить и отличным хранилищем электронов. Однако реально эта функция имеет определенные ограничения по причине неидеальности изоляционных характеристик используемого диэлектрика. Тем не менее конденсатор обладает свойством достаточно длительное время хранить электрическую энергию при отключении от цепи заряда, поэтому он может быть использован как временный источник питания.

Благодаря своим уникальным физическим свойствам эти элементы нашли настолько широкое применение в электронной и электротехнической промышленности, что сегодня редко какое электротехническое изделие не включает в себя по крайней мере один такой компонент для какой-либо цели.

Подводя итоги, можно констатировать, что конденсатор - это бесценная часть огромного множества электронных и электротехнических устройств, без которых был бы немыслим дальнейший прогресс в науке и технике.

Вот что такое конденсатор!


Питер ван Мушенбрук ()





Что такое конденсатор? Конденсатор (от лат. condense «уплотнять», «сгущать») двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.лат.двухполюсникёмкостипроводимостью диэлектриком


Свойства конденсатора Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещенияцепи постоянного тока переменного токатоком смещения


В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом:метода комплексных амплитуд импедансом Резонансная частота конденсатора равна: Резонансная частота При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 23 раза ниже резонанснойкатушка индуктивности


Основные параметры. Ёмкость Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад. ёмкостьэлектрический зарядзаряд напряжениюфарад Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулойСИ


Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею. Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади. При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счет разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна


Удельная ёмкость. Конденсаторы также характеризуются удельной ёмкостью отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.


Плотность энергии Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита. Например, у конденсатора EPCOS B4345 емкостью мкФ x 450 В и массой 1.9кг плотность энергии составляет 639Дж/кг или 845Дж/л. Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным её высвобождением, например, в пушке Гауссапушке Гаусса


Номинальное напряжение Другой, не менее важной характеристикой конденсаторов является номинальное напряжение значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.температурыскоростиносителей заряда


Полярность Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.электролитические электролитавзрыва

Первый конденсатор был создан в 1745 г. голландским ученым Питером Мушенбруком , профессором Лейденского универси-тета. Проводя опыты по электризации тел, он опустил проводник от кондуктора элект-рической машины в стеклянный графин с водой. Случайно коснувшись пальцем этого проводника, ученый ощутил сильный элект-рический удар. Позже жидкость заменили металлическими проводниками изнутри и снаружи банки и назвали эту банку лейден-ской (рис. 4.68). В таком виде она про-существовала почти 200 лет.

Более сложные и совершенные конден-саторы нашли широкое применение в со-временных электротехнике и радиоэлектрон-ной технике. Они есть в фильтрах адаптеров, которые подают постоянное напряжение для питания электронных приборов, в радио-приемниках и радиопередатчиках как эле-менты колебательных контуров или состав-ные различных функциональных схем элект-ронной аппаратуры. В фотовспышках кон-денсаторы накапливают большой заряд, не-обходимый для работы импульсной лампы.

Мушенбрук Питер ван (1692 — 1761)— голландский физик. Родился в Лейде-не. Окончил Лейденский университет, был профессором Дуйсбургского, Утрехт-ского и с 1740 г. Лейденского универ-ситетов. Работы посвящены электри-честву, теплоте, оптике. В 1745 г. не-зависимо от Клейста изобрел первый конденсатор — лейденскую банку и провел с ней ряд опытов, в частности обратил внимание на физиологическое действие тока. Был автором первого си-стемного курса физики, а его двухтом-ное издание «Введение в натуральную философию» (1762 г.) было энциклопе-дией физических знаний того времени.

В электротехнике конденсаторы обеспе-чивают необходимый режим работы элект-родвигателей, автоматических и релейных приборов, линий электропередач и т.п. Материал с сайта

Рис. 4.70. Разные типы конденсаторов постоянной емкости

Во многих широкодиапазонных радио-приемниках конденсаторы переменной ем-кости (рис. 4.69) позволяют плавно изме-нять собственную частоту колебательного контура при поиске передачи необходимой радиостанции. Широко распространены кон-денсаторы, емкость которых можно изме-нять электрическим способом. Их называют варикапами.

Конструктивно конденсаторы могут быть плоскими , трубчатыми , дисковыми . В ка-честве диэлектрика в них применяют парафи-нированную бумагу, слюду, воздух, пласт-массы, керамику и т. п. (рис.4.70). Благодаря искусственным изоляционным материалам в наше время созданы конденсаторы боль-шой емкости, приходящейся на единицу объема.

Изобретатель : Юрген фон Клейст, Питер ван Мушенбрук
Страна : Голландия
Время изобретения : 1745 г.

Первая половина XVIII века была временем быстрого накопления опытных фактов об явлениях. Именно в это время, например, выяснилось, что существуют два рода электричества. Однако само явление электризации тел, природа электричества оставались совершенно загадочными.

Обычно считалось, что электричество - это особая жидкость, содержащаяся в каждом заряженном теле. А наблюдавшееся уменьшение заряда на телах естественно трактовалось как «испарение» этой электрической жидкости. Столь же естественной была идея попытаться предотвратить такое «испарение», поместив заряженное тело в … , выбрав в качестве заряженного тела воду.

Такой именно опыт поставил в 1745 году настоятель одного из соборов в Померании Юрген фон Клейст (по другим сведениям опыт был поставлен с целью получить заряженную воду, якобы полезную для здоровья). Он наполнил водой бутылку, закрыл ее пробкой, а через ввел в воду металлический стержень (попросту гвоздь).

Присоединив внешний конец стержня к электрической машине, которая в те времена представляла собой вращающийся шар, о который терлась рука экспериментатора, Клейст сообщил воде значительный электрический заряд. И тут случилось непредвиденное.

Взяв одной рукой бутылку, он имел неосторожность прикоснуться другой рукой к выступавшему из пробки концу гвоздя, и при этом ощутил в руках и плечах сильнейший удар, вызвавший онемение мышц. Потрясенный случившимся, он сообщил об этом в письме одному из своих друзей.

По случайному совпадению, почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком. Только вместо толстостенной бутылки Мушенброк воспользовался тонкостенной стеклянной банкой. Зарядив воду и взяв банку в одну руку, он тоже прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде.

При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя. Сообщая об этом «приключении» в письме своему французскому корреспонденту, Мушенбрук добавляет, что не согласился бы повторить опыт, даже если бы ему было обещано французское королевство!

Сначала наблюдения Клейста и Мушенбрука были понятны, как проявления так называемого «живого электричества», поскольку в этих опытах такую важную роль играли руки человека. Но довольно скоро стало ясно, что рука, держащая банку, и заряженная жидкость в ней являются, как мы теперь говорим, обкладками конденсатора и что еще более эффективный прибор получится, если внешнюю и внутреннюю поверхности стенок банки покрыть слоем металла, например, оловянной фольги.

Первая половина XVIII века была временем быстрого накопления опытных фактов об электрических явлениях. Именно в это время, например, выяснилось, что существуют два рода электричества. Однако само явление электризации тел, природа электричества оставались совершенно загадочными.

Обычно считалось, что электричество - это особая жидкость, содержащаяся в каждом заряженном теле. А наблюдавшееся уменьшение заряда на телах естественно трактовалось как «испарение» этой электрической жидкости. Столь же естественной была идея попытаться предотвратить такое «испарение», поместив заряженное тело в... бутылку, выбрав в качестве заряженного тела воду.

Такой именно опыт поставил в 1745 году настоятель одного из соборов в Померании Юрген фон Клейст (по другим сведениям опыт был поставлен с целью получить заряженную воду, якобы полезную для здоровья). Он наполнил водой бутылку, закрыл ее пробкой, а через пробку ввел в воду металлический стержень (попросту гвоздь).

Присоединив внешний конец стержня к электрической машине, которая в те времена представляла собой вращающийся стеклянный шар, о который терлась рука экспериментатора, Клейст сообщил воде значительный электрический заряд. И тут случилось непредвиденное.

Взяв одной рукой бутылку, он имел неосторожность прикоснуться другой рукой к выступавшему из пробки концу гвоздя, и при этом ощутил в руках и плечах сильнейший удар, вызвавший онемение мышц. Потрясенный случившимся, он сообщил об этом в письме одному из своих друзей.

По случайному совпадению, почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком. Только вместо толстостенной бутылки Мушенброк воспользовался тонкостенной стеклянной банкой. Зарядив воду и взяв банку в одну руку, он тоже прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде.

При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя. Сообщая об этом «приключении» в письме своему французскому корреспонденту, Мушенбрук добавляет, что не согласился бы повторить опыт, даже если бы ему было обещано французское королевство!

Сначала наблюдения Клейста и Мушенбрука были понятны, как проявления так называемого «живого электричества», поскольку в этих опытах такую важную роль играли руки человека. Но довольно скоро стало ясно, что рука, держащая банку, и заряженная жидкость в ней являются, как мы теперь говорим, обкладками конденсатора и что еще более эффективный прибор получится, если внешнюю и внутреннюю поверхности стенок банки покрыть слоем металла, например, оловянной фольги.

Так появился на свет первый электрический конденсатор, который французский физик Жан Нолле назвал Лейденской банкой - название, не забытое и в наши дни. Вероятно, отголоском тогдашних наивных представлений об электричестве и о «бутылочном» происхождении конденсатора осталось слово, обозначающее главную характеристику конденсатора - емкость.