Пассивный дом. Понятие и основные принципы проектирования пассивного дома. Дома с нулевым потреблением - практичны ли они

5 10 15 20 25 30 50 100 Все

  • Исследование: энергоэффективные дома экономят деньги в долгосрочной перспективе

    Потребители и застройщики еще недостаточно полагаются на возможную выгоду домов с нулевым расходом электроэнергии из-за высокого уровня авансовых расходов, но такое отношение к вопросу может оказаться недальновидным, утверждает недавнее исследование.

    Правительство США изменило политику

    ...
  • «Умный» модульный дом на солнечной энергии стал призером Solar Decathlon 2018

    Ближневосточный конкурс Solar Decathlon 2018 – ответвление основного соревнования по созданию энергоэффективных домов на солнечных батареях, проводимого в США.

    Победа в конкурсе Solar Decathlon 2018 далась студентам Политехнического университета Вирджинии не легко. Чтобы создать FutureHaus (Дом Будущего), им понадобились годы исследований и улучшений, случайный пожар и восстановление, а затем месяц жизни в пустыне в

    ...
  • Project HOPE: купольный дом, который производит энергии больше, чем потребляет

    Калифорнийская некоммерческая организация Green New World доказала на наглядном примере, что строительных технологий может и должно быть более экологичным, здоровым и энергетически автономным. Компания создала концептуальный дом House of Peace (также известный под именем Project HOPE) – образец жилого дома с автономным и регенеративным энергообеспечением с рекордно низким

    ...
  • Китайский дом будущего «Living Garden» получил полную автономию за счет энергии солнца

    Пекинское архитектурное бюро MAD Architects в партнерстве с компанией по производству энергии из возобновляемых источников Hanergy завершило работу над прототипом «дома будущего» - полностью энергетически автономного павильона, в котором стирается грань между отдыхом в стенах дома и на свежем воздухе.

    Обширная изогнутая крыша «Обитаемого сада» покрыта

    ...
  • 3D-печатные мобильные экодома составят деревню для работников Кремниевой долины

    На калифорнийском побережье предполагается возвести рекреационную жилую зону Walden Monterey, главными обитателями которой станут работники Кремниевой долины. Девелопер участка Ник Джекогян решил очаровать потенциальных покупателей жилья красотами пейзажей полуострова Монтерей, предложив им передвижное жилье – уютные маленькие хижины, построенные с применением всех передовых экологически чистых и энергоэффективных

    ...
  • Солнечная энергия и водород обеспечат полную автономию домов в Германии

    На рынок Германии в продажу поступили многофункциональные энергетические системы, предназначенные для обеспечения электричеством, горячим водоснабжением и отоплением частных домов.

    Продукт под названием «Picea» производится немецкой компанией HPS Home Power Solutions GmbH и способен сделать домохозяйство практически

    ...
  • sCarabane: стильный кемпер-трансформер с солнечными панелями и ветряком

    Миниатюрные дома на колёсах достаточно удобны для отдыха и поездок на дальние дистанции. Хорошим примером может послужить немецкий кемпер Dethleffs , оборудованный солнечными панелями и большой батареей, обеспечивающими автодому полную

    ...
  • На украинский автономный модульный дом поступило 8000 предзаказов

    Во время строительства 10-ти звёздочного (по меркам энергосбережения) дома, компании The Sociable Weaver и Clare Cousin Architect

    ...
  • В Японии умные дома обеспечат себя энергией за счет искусственного фотосинтеза

    Японская компания TOKYO Iida Group протестирует жилой дом, который использует углекислый газ (СО2) для искусственного фотосинтеза.

    Опыты будут проводиться совместно с сотрудниками Университета Осаки. Специалисты стремятся создать , которые смогут не только снизить количество поступающего в окружающую среду CO2, а и

    ...
  • Дома из солнечных блоков будут сами для себя генерировать энергию

    Компактный передвижной домик от Tesla перемещается с

    ...
  • Самораскладывающийся модульный дом от TEN FOLD легко транспортируется, расширяется и может быть полностью автономным (видео)

    Основанная в Великобритании компания Ten Fold Engineering разработала модульную, саморазвертывающуюся систему, которая может превратиться из куба размером с грузовик в функционирующее здание менее чем за десять минут.

    Эта идея похожа на выдумку из научно-фантастического романа, но в основе ее очень простая концепция. Все происходит по принципу «собери себя сам», владелец должен всего лишь нажать

    ...
  • Дом из мешков с землей и глиной Earthbag – опыт украинского первопроходца

    Как построить экодом с минимальными вложениями? Легко! Потребуется лишь тысяча мешков глины, немного дерева, ни грамма цемента и все это будет прекрасно стоять без всякого фундамента. Украинец Олег Почигайло решил вернуться к старинным технологиям строительства жилья, которые немного

    ...
  • Создана гибридная эко-крыша, сочетающая 5 энергосберегающих технологий

    Малазийские инженеры разработали кровельную установку, которая способна одновременно генерировать энергию солнца и ветра , а также собирать дождевую воду, вентилировать и освещать помещения.

    Исследователи из Университета Малайи (Малайзия) сконструировали крышу, которая призвана помочь решению основной энергетической проблемы

    ...
  • Батареи Tesla Powerwall 2 станут стандартом в новых домах Австралии

  • В Дубае строится вращающийся небоскрёб Dynamic Tower

    Современный мир полон уникальных, привлекающих внимание зданий, но строящийся в Дубае небоскрёб станет действительно рывком в развитии . Ранее сообщалось, что итальянский архитектор израильского происхождения Дэвид Фишер предложил возвести небоскрёб под названием ...

  • Пассивный дом «Солнечная ферма» сам себя обеспечит энергией

    Американская компания Deltec разработала и приступает к продажам новой линейки полностью энергетически независимых домов. Стартовая цена составляет 62 000 долларов.

    В наши времена постоянно растущих тарифов и меняющегося климата потреблением энергии становятся золотым стандартом экологического строительства. Если вы

    ...
  • Роскошный жилой комплекс с функцией электростанции построят на Карибах

    В 2020 году в Доминиканской республике планируют построить футуристичный жилой комплекс EXOSPHERE, который будет самостоятельно обеспечивать себя электричеством. Здание, разработанное бюро Richard’s Architecture + Design (RA+D), сможет получать энергию от , ветра и геотермальных установок.

    Основную часть энергии EXOSPHERE

    ...
  • Smart Green Tower – многоэтажный экодом, питающий энергией соседние здания

  • Как построить маленький домик из соломенных панелей и глины знают на Ивано-Франковщине

    Мастер художественной обработки металла

Что такое «народный экодом нулевого энергопотребления»?

Экодом на Западе — это жилище, соответствующее «устойчивому развитию» цивилизации, т.е. такому развитию, при котором практически не используются невозобновляемые источники энергии и вещества с одной стороны, и не наносится вреда природе и здоровью человека, с другой. В США, Швеции, Германии, Японии и других странах уже десятилетиями эксплуатируются комфортабельные дома с низким и даже «нулевым» потреблением энергии, без канализационных сетей. В Стокгольме более 10 лет успешно эксплуатируется комфортабельный дом с бассейном и огромным зимним садом, не имеющий не только канализации, тепло- и электроснабжения, но и водопровода. Правда, назвать такой экодом «народным» никак нельзя — он стоит слишком дорого. Фирма ISOMAX уже построила несколько тысяч домов в Польше, Финляндии, Германии с системами солнечного отопления и аккумулирования и добилась того, что дома нулевого энергопотребления стоят не дороже каменных.

«Народный экодом», который мы разрабатываем, будет иметь себестоимость порядка 90 $/кв.м, причем при его строительстве используются только местные доступные экологически чистые природные материалы и энергосберегающие технологии строительства.

Почему так дешево?

Потому что технологии, переданные нам из США, Швеции и Германии дешевы, доступны и используют самые дешевые природные материалы — прессованную солому, либо глиносоломенную смесь. «Ну вот, опять саман, а мы — то думали…» — произнесет про себя читатель и будет не прав. Технология не предусматривает использование самана (80% -глина, 10% -солома и 10%-органика), а используется солома, смоченная глиняным раствором (90%- солома и 10% -глина). Эта «мокрая» технология обобщает четырехвековой немецкий опыт «фахтверкового» (каркасного) строительства в природно-климатических условиях, сходных с белорусскими. Саман почти в четыре раза тяжелее, не является теплоизолятором и в условиях Беларуси неприемлем — у нас слишком влажно.

Суть технологии проста: на фундаменте ставится деревянный каркас (20куб.м дерева на 200 кв.м жилья в двух уровнях), который заполняется методом скользящей опалубки глиносоломенной смесью, причем полностью (фронтоны и межстропильное пространство тоже). Это занимает менее месяца, после чего накрывается крыша и дом сохнет (3-12 месяцев в зависимости от погодных условий). После этого дом штукатурится и отделывается в зависимости от вкуса и возможностей хозяина. Кстати, стены толшиной 40-45 см обладают такой же теплоизолирующей способностью как кирпичные толщиной 0,7 м, и рядом других преимуществ: они легко «дышат» (не путать с инфильтрацией), решают проблему радона, не эмитируют вредные вещества, связанные с тепловой обработкой и т.д. Такие дома стоят в Германии 3-4 века и после своей «смерти» не создают проблем с утилизацией строительного мусора. Энергии для строительства таких домов тратится в тысячи раз меньше по сравнению с кирпичными и эксплуатационные затраты на отопление — меньше. Квалификация нужна только при строительстве каркаса и отделочных работах. Недостатками технологии являются большая трудоемкость и большие сроки строительства, связанные с сушкой самонесущего наполнителя стен.

Этих недостатков лишена другая, более эффективная индустриальная «сухая» технология, очень популярная сейчас в США, и использующая те же принципы. Она заключается в использовании прессованных соломенных блоков (сразу после пресс-подборщика с поля) как основного конструктивного стенового материала с последующим оштукатуриванием, то есть блоки могут укладываться на раствор или использоваться в качестве самонесущего наполнителя каркасных стен (сухая технология «прошивных матов»). Следует напомнить, что строительные стандарты США по многим параметрам жестче наших. и эта технология полностью сертифицирована в США. Например, по огнестойкости она полностью соответствует требованиям, а по теплопроводности — в 3 раза лучше. Наружная и внутренняя отделка стен в таких домах не отличается от обычной в США. Такой дом можно построить за неделю и отделывать сразу, что и было продемонстрировано в августе этого года Белорусским отделением Международной Академии Экологии и Solar Energy International из США в п.Занарочь. Стена такого дома при толщине 60 см имеет сопротивление теплопередаче не менее 10. Стоят такие дома по 100 и более лет. Например, сейчас в США живут люди в домах из прессованной соломы, построенных в прошлом веке.

А как насчет огнестойкости?

Согласно международным стандартам DIN 4102 и DIN 18951(21/51) глиносоломенные смеси являются негорючими материалами вплоть до 5% содержания глины при условии, что минеральное связующее (глина) равномерно распределено по объему. Объяснить это легко: глины содержат большое количество калийных соединений, являющихся антипиренами. По международным нормам оштукатуренные стены, построенные по «straw-bаlе» технологии, можно отнести к классу F45, т.е. сопротивляемость огню не менее 45 минут. Соломенные блоки, положенные на цементный раствор с последующим оштукатуриванием, имеют еще более высокий класс, вплоть до F120.

Какие коммуникации нужны экодому?

Вообще-то нужны только дороги и электричество (если не по карману дорогостоящие солнечные батареи с электроаккумулирующими системами). А канализация? Конечно, нужна, только не такая, как у нас. Наша, во-первых, она очень дорогая, во-вторых, не решает проблему утилизации хозбытовых стоков (например, проблему осадка сточных вод), а только переносит ее из одного места в другое, и главное — она не является системой локально замкнутого цикла. При индивидуальной застройке это как бы «теплотрасса наоборот», и вреда она наносит не меньше, чем наши пресловутые теплотрассы. Вместе с тем, американское «министерство здравоохраниния» давно сертифицировало и разрешило использовать даже в городах очень дешевые локальные биологические системы утилизации хозбытовых стоков, работающие по принципу «замкнутого цикла» и не создающие проблем ни зимой (до -50С), ни летом (до +50С), позволяющие пользоваться всеми благами цивилизации при двух условиях: в туалет нельзя сливать концентрированные яды и бросать биологически неразлагаемые предметы: пластик, некоторые виды бумаги и т.д. Площадь биоочистных — около 200 кв.метров, и выглядит как обычный фруктовый сад и огород; расчетное время эксплуатации на семью из 8 человек — около 100 лет, причем урожайность на этих двух сотках необычайно высока. Можно использовать специальные компостные туалеты, разработанные в Швеции и США и использовать компост как дешевое органическое удобрение.

Отопление (и кондиционирование) экодома обычно содержит основную и вспомогательную системы помимо пассивной солнечной, которая у нас практически не используется. Основная обычно состоит из солнечного теплового коллектора и теплоаккумулятора, запасающего тепло по суточным и сезонным циклам. Конструкции могут быть различными: в Швеции и Норвегии предпочетают твердотельные аккумуляторы под домом; в США и Германии — жидкостные внутри дома (на 200 кв.м жилой площади — около 15 тонн воды). Обычно такие системы стоят недешево, однако их можно сделать очень дешевыми, используя местные материалы и комплектующие: например, тепловой коллектор на крышу экодома конструкции БО МАЭ стоит всего 50$/Квт установленной мощности и не боится заморозков. Обязательной является система рекуперации тепла при вентиляции.

Вспомогательной отопительной системой является обычно камин или небольшая печь медленного горения. Фирма ISOMAX использует в качестве вспомогательной или «аварийной» систему электроподогрева пола с использованием ночного электричества мощностью 2 Вт/кв.м жилой плошади.

Ставшее в последнее время расхожим выражение "Энергоэффективный дом" в России пока не имеет конкретного определения. Законом "Об энергосбережении..." предписывается определять класс энергоэффективности многоквартирных жилых домов и информацию о классе энергоэффективности вывешивать на фасаде дома. До 1 мая 2010 г. Министерство регионального развития России должно определиться с классами энергоэффективности домов. Главный критерий энергоэффективности для жилых домов, используемый сегодня в мире - это значение удельного энергопотребления дома, необходимого для обеспечения комфортных условий проживания. Комфортные условия проживания - это не менее 18 градусов по Цельсию и нормальная влажность.

До сих пор теплоэффективность зданий определялась исходя из уровня тепловой энергии, которую необходимо подвести для отопления 1 кв.м. площади здания. Для различных типовых проектов зданий этот показатель, естественно, различается. Для обеспечения тепловой защиты зданий СНиП II-3-79 (скачать как архив ZIP) был оговорен график достижения тепловой эффективности. В среднем для России в сравнении с ФРГ это выглядело так:

В 2003 г. СНИиП II-3-79 был отменен, вышедший в замен его СНиП 23-03-2003 (скачать как архив ZIP) ввел градацию зданий по теплоэффективности с привязкой к проектному уровню. Введено 5 классов по отклонению от нормы А,В,C,D,E. Нормальный класс - С. Если дом по состоянию энергоэффективности на 50% лучше этого класса, т.е. с коэффициентом 1,5, то это класс А, если на 76% и более хуже, т.е. с коэфициентом более 1,76, то это класс Е.

Как видно из приведенных примеров, уровень требований к тепловому сопротивлению конструкций в России существенно ниже требований, предъявляемых в странах Евросоюза с похожими на наши климатическими условиями. Например в Финляндии уже обеспечивается уровень требований 17 Вт.ч/(м 2 . o C.сут), что в 4-5 раз лучше обеспечиваемых у нас требований.

Параметр Вт.ч/(м 2 . o C.сут) универсального применения и предназначен для расчета мощности отопительных систем домов и относительной оценки качества зданий в сходных климатических условиях. Для потребителя более понятна конечная информация о необходимой мощности для отопления помещения. Для этого, в качестве справочного параметра, можно использовать данные приведенные в таблице, заменив значение Вт.ч/(м 2 . o C.сут) на значение Вт/кв. метр. Для климатической зоны средней Европы и центральной России такой подход уместен, хотя и приблизителен.

Общие требования к пассивному дому

В настоящее время в Европе уровень энергоэффективности, на который сориентировано строительство и реконструкция домов, соответствует понятию "пассивный дом". Это такой дом, удельный расход тепловой энергии на отопление у которого не должен превышать 15 кВт∙ч/(м 2 год). Это приблизительно соответствует расчетной мощности подогрева 7-10 Вт на квадратный метр, что составляет 10% от уровня расчетной мощности отопительных систем обычных домов. Общее потребление первичной энергии для всех бытовых нужд (отопление, горячая вода и электрическая энергия), не должно превышать 120 кВт∙ч/(м 2 год). На практике это означает, что такой дом можно дополнительно не отапливать, все необходимое тепло может быть обеспечено за счет жизнедеятельности человека.

Пассивные дома - уже не единичное явление в Европе. Таких домов зарегистрировано более 4000. В основном это небольшие жилые дома коттеджного типа. Но среди них есть и немало немало многоквартирных домов на 4-10 квартир.

Расчеты показывают: чтобы сделать дом "пассивным", необходимо снизить тепловые потери дома на 90%. Для этого необходимо обеспечить ряд требований к тепловой защите здания и некоторым элементам конструкции:

Тепловое сопротивление наружных стен, кровли, пола первого этажа. R0 ≥ 6,7 (м2 о C)/Вт
Тепловое сопротивление остекления R0 ≥1,4 (м2 о C)/Вт
Тепловое сопротивление оконного профиля R0 ≥ 1,25 (м2 о C)/Вт
Тепловое сопротивление установленного в стену окна. Примерно такие же требования к входным дверям. R0 ≥ 1,2 (м2 о C)/Вт
В конструкции дома должны быть максимально исключены тепловые мосты.
Высокий КПД рекуператора в системе вентиляции (исходящий воздух отдает тепло входящему свежему воздуху). КПД более 75%, лучше более 80%.
Кратность воздухообмена при разности давлений 50 Па наружного и внутреннего воздуха. n50 ≤ 0,6 ч-1.

Конструктивно дом должен быть не только хорошо утеплен и герметизирован. Дом в большей степени должен быть остеклен с южной стороны и представлять из себя "тепловую ловушку".

Если сравнить возможности по сохранению тепла обычного добротного кирпичного дома с толщиной стен в 2 кирпича и "пассивного дома", то при внешней температуре -26 градусов мороза и отключении источников тепла температура в обычном доме за сутки снизится до +2-3 градусов, в пассивном доме до + 16 градусов по Цельсию. Поэтому так и получается, что даже в сильный мороз за счет тепла от приготовления пищи, работы бытовой техники и освещения в доме поддерживается нормальный микроклимат.

Как построить пассивный дом?

Как уже отмечалось, пассивный дом - это отличная теплоизоляция, герметичность, возврат тепла вытяжной вентиляции в дом с притоком свежего воздуха, энергоэффективная бытовая техника.

Для того, что бы определиться с необходимыми конструктивными решениями, нужно составить энергетический баланс дома. Обычно приход-расход тепла имеет следующий вид:

Из приведенных данных видно, что около 70% утечек тепла приходится на конструкцию здания, 30% - на результат жизнедеятельности человека: вентиляцию и стоки. Значит основное внимание необходимо уделять теплоизоляции.

Повышение теплового сопротивления ограждающих конструкций и сокращение утечек тепла

В понятие ограждающих конструкций входят стены, крыша, окна, входные двери, пол первого этажа, фундамент.

Приведем основные принципы, которые должны соблюдаться при повышении теплового сопротивления ограждающих конструкций:

  • Разделение функций строительных материалов в конструкциях. Конструкционные и крепежные элементы должны обеспечивать прочность, утеплители должны обеспечивать тепловую изоляцию, декоративно-отделочные материалы - внешний вид. При таком подходе удается сократить количество "тепловых мостов", по которым тепло из дома может выходить наружу.
  • Теплоизоляция должна располагаться равномерно и непрерывно по всему контуру здания.
  • Мостики холода должны максимально исключаться и при необходимости иметь дополнительную теплоизоляцию.
  • По всему контуру здания должна быть проложена воздухонепроницаемая оболочка, обеспечивающая герметизацию здания.

Бытует мнение, что стоимость дополнительной теплоизоляции значительно увеличивает стоимость строительства. Это неправда. При реализации вышеизложенных принципов стоимость кирпичной стены, обеспечивающей необходимое тепловое сопротивление в несколько раз выше каркасной стены с облицовкой. Это видно из сопоставления толщин стен различных конструкций одинаковой теплопроводности, обеспечивающих тепловое ограждение для разницы температур -26 градусов снаружи, +18 градусов внутри:

Наиболее проблемные места для теплозащиты здания:

  • места сочленения крыши и стен;
  • места примыкания перекрытий и стен;
  • контуры установки оконных коробок и примыкания фрамуг;
  • места примыкания стен к фундаменту.

Как правило, места примыкания стараются делать с применением термовкладок из конструкционных материалов с низкой теплопроводностью. Например, блоки из ячеистого бетона, специальных видов кирпича и т.д. Места сочленений дополнительно герметизируют различными видами герметиков, пластичными строительными растворами.

Теплопотери через фундамент сокращают:

  • теплоизоляцией фундамента снаружи по всей высоте;
  • установкой горизонтальной наружной теплоизоляции по периметру дома у нижней кромки опоры фундамента;
  • установкой фундаментных блоков на песчанную подушку;
  • применением схемы укладки плиты первого этажа на грунт через сэндвич: песчанная подушка, гидроизоляция, толстый утеплитель;
  • фундаментные блоки над поверхностью должны иметь теплоизоляцию снаружи и изнутри.

При такой схеме зона промерзания грунта будет находиться на значительном расстоянии от дома и утечки тепла через подпол будут несущественны. Аналогичным образом решаются проблемы сокращения теплопотерь при обустройстве подземных помещений.

Энергосберегающие окна

Обязательный элемент пассивного дома - окна с высоким тепловым сопротивлением R0 не менее 1,2 (м2 о C)/Вт. Таким требованиям отвечают следующие технические решения:

  • стеклопакет в окне с тройным остеклением и с наполнением стеклопакета инертным газом;
  • стекла в окне должны иметь низкоэмиссионное покрытие с внутренних сторон межстекольного пространства, снижающее теплообмен внутри стеклопакета;
  • профиль окна должен иметь высокое тепловое сопротивление. Таким требованиям отвечает часть профилей ПХВ, специально обработанные деревянные профили;
  • при установке оконного блока должна быть обеспечена герметичность стыка с конструктивными элементами здания. Элементы крепления оконного блока не должны создавать тепловых мостов;
  • при установке окна используются вспомогательные материалы для монтажа окон без тепловых мостов и материалы, обеспечивающие герметичность.

Энергосберегающие двери

Внешние двери должны быть теплоизолированы. При входе в дом должен быть тепловой тамбур и вторая дверь. Требования к уплотнению притвора дверей и стыка дверной коробки с конструктивными элементами здания такие же, как для окон.
Пример конструктивного исполнения дверного полотна для пассивного дома:Дверное полотно состоит из теплоизоляционного слоя из пробки толщиной 64 мм. Этот слой обшит с двух сторон березовой фанерой толщиной 12 мм. В теплоизоляционном слое расположены поперечные прокладки из фанеры через каждые 25 см. Площадь прокладок из фанеры составляет только 5% от общей площади, их толщина составляет 12,5 мм. Наружный слой состоит из шпона толщиной 1,4 мм, фанеры из бука толщиной 4 мм и алюминиевой пластины толщиной 1,2 мм в качестве паронепроницаемого слоя, приклеенной с помощью фенольного клея. Общая толщина двери составляет 100 мм.

Энергосберегающая вентиляция

В пассивных домах не применяется вентиляция посредством открывания форточек. Это крайне расточительно с точки зрения теплопотерь и неэффективно с позиции удаления загрязненного воздуха. Для того, что бы обеспечить необходимую для здоровья активность обмена воздуха при помощи окон нужно открывать их полностью на 10-15 минут каждые 3 часа. Приточно-вытяжная вентиляция в пассивном доме организована следующим образом:

  • воздух из кухни, ванной, туалета не участвует в рециркуляции и удаляется из помещений наружу;
  • в жилые помещения подается только чистый воздух;
  • отводимый из дома (из кухни и санузла) воздух проходит через теплообменник (рекуператор) и нагревает поступающий в помещения воздух. Эффективность современных рекуператоров 75-95%. Возможно применение специальных электродвигателей с высоким КПД в вентиляции. Затраты энергии на работу двигателя в 8-15 раз меньше сберегаемого с его помощью тепла;
  • часто для предварительного подогрева наружный воздух предварительно пропускают через грунт под домом. Тепло грунта подогревает воздух и обеспечивает более эффективную работу теплообменника - рекуператора;
  • чистый воздух сначала поступает в жилые помещения. Из жилых помещений в коридоры и лестничные переходы, затем в кухню, туалет, ванную. Такая схема обеспечивает поддержание в помещении необходимой влажности и надежное удаление загрязненного воздуха.

Дом пассивный. А что дальше?

В общем смысле основная задача пассивного дома - обеспечение тепловой эффективности, достаточной для отказа от дополнительного отопления. Но в концепции энергоэффективного дома ограничено общее потребление энергии, тепла, горячей и холодной воды, газа из сторонних источников уровнем 120 кВт∙ч/(м 2 год). Реальное совокупное энергопотребление среднего дома со средней семьей в несколько раз превышает указанную цифру. То есть энергосбережение во всех точках приложения энергии - необходимое условие для отнесения жилища к этой категории.

Что заставляет людей стремиться к самограничению? Конечно, очень высокие цены на коммунальные услуги и энергоносители. Но в не меньшей степени и новая философия жизни, в которой нет снижения уровня комфорта, но есть желание жить в гармонии с внешней средой, не нанося ей ущерб. Современные технологии предоставляют для этого необходимые возможности:

  • применение солнечных коллекторов позволяет полностью отказаться от использования газа и электрической энергии для подогрева воды и помещения;
  • применение солнечных батарей и ветрогенераторов совместно с аккумуляторными батареями позволяет полностью отказаться от электроснабжения;
  • применение контроллеров для управления электрическими устройствами и системой теплообеспечения позволяет оптимизировать микроклимат в помещении, согласовать работу устройств с наличием людей в доме;
  • применение функционально насыщенной экономичной бытовой техники;
  • возможность использования тепловых насосов для исключения сброса тепла и использования аккумулированной тепловой энергии;
  • возможность использования биогаза, полученного при брожении и газогенерации взамен магистрального природного газа.

Этот перечень можно существенно продолжить. В настоящее время мы, в основном, используем запасенную энергию Земли и крайне мало используем энергию из возобновляемых источников энергии моря, рек, водоемов, солнца, ветра.

Пассивные дома совсем недавно казались малопонятной экзотикой. Сегодня это вполне достижимая реальность, предмет для широкого внедрения и преференций со стороны государства.

Умные энергонезависимые дома пока тоже экзотика. Но количество таких домов увеличивается, технологии настраиваются на предложение доступных по цене и качеству устройств и материалов для обеспечения такого строительства. Во Франции несколько лет функционирует 10 этажное офисное здание с энергоснабжением от солнечных батарей. Количество вырабатываемой энергии превышает собственные нужды здания. В Китае открывается самое большое в мире здание общей площадью 75 тысяч квадратных метров с энергоснабжением от солнечных батарей. Значит появится опыт эксплуатации, стандарты исполнения и доступные цены. Это всего лишь вопрос времени. Такое строительство уже не дань моде и не эксперименты. Высокие цены на энергию и энергоносители делают выгодными вложения в энергонезависимые объекты.

В статье приведена классификация зданий по их уровню энергопотребления, рассматриваются основные принципы проектирования и строительства пассивных домов.

Классификация зданий по их уровню энергопотребления

Для того чтобы понять, как различные строения отличаются между собой по их уровню энергоэффективности (или отсутствия такового), рассмотрим для начала европейскую классификацию зданий в зависимости от уровня энергопотребления во время их эксплуатации:

  • Старые здания (здания построенные до 1970-х годов) —требуют для своего функционирования (отопления и охлаждения) около 300 кВт-час/м² в год. Этот стандарт, к сожалению, до сих пор отвечает и обычному зданию, которое строится в Украине.
  • Новые здания (которые строились в Европе с 1970-х до 2002 года) — 150 кВтh/(м²a).
  • Дома низкого потребления энергии (с 2002 года в Европе не разрешено строительство домов с большим энергопотреблением!) — 60 кВт-час/м² в год.
  • Пассивный дом (принят Закон, согласно которому с 2019 года в Европе нельзя строить дома по стандартам ниже, чем пассивный дом) — 15 кВт-час/м² в год.
  • Дом нулевой энергии (здание, архитектурно имеющее тот же стандарт, что и пассивный дом, но инженерно оснащенное так, чтобы потреблять исключительно только ту энергию, которую само и вырабатывает) — 0 кВт-час/м² в год.
  • Дом плюс энергии (здание, которое с помощью установленного на нем инженерного оборудования: солнечных батарей, коллекторов, тепловых насосов, рекуператоров и т.п. вырабатывает больше энергии, чем само потребляет).

С 2019 года в Европе можно будет строить дома не ниже стандарта пассивного. При этом, дома нулевой или плюс энергии не отличаются от пассивного стандарта своими архитектурно-планировочными решениями и принципами строительства. В них увеличивается только объем и мощность инженерного оборудования на основе альтернативных источников энергии.

Таким образом, пассивный дом — это стандарт, к которому сейчас cтремится прогрессивное европейское сообщество. Считается, что концепция пассивного дома предлагает застройщику рациональное соотношение цены и получаемого качества в проектировании и строительстве. В зависимости от желания и финансовых возможностей заказчика, пассивный дом может потребовать увеличения затрат при строительстве от 3% до 30% по сравнению со стоимостью возведения обычного украинского дома. Но, при этом, на эксплуатационных расходах в этом доме будет экономится от 70% до 99%, что, к сожалению, у нас в Украине еще не очень актуально, так как цены на энергоносители далеки от европейских.

И все же, если только с помощью рационального проектирования можно значительно уменьшить затраты на эксплуатацию здания, то почему бы и нет?

Первое, что нужно понимать, когда речь заходит о пассивном доме: для того чтобы строить энерговыгодно средств нужно не на много (на 3-7%) больше, чем для обычного строительства. Ведь пассивный дом называется «пассивным» именно потому, что он уже за счет своей архитектуры — то есть не активно (с помощью инженерного оборудования), а пассивно (с помощью планировочного решения) — поглощает, аккумулирует и сохраняет для своих жильцов максимальное количество энергии из окружающей среды. Это достигается именно с помощью архитектурно-планировочного решения, которое основывается на обеспечении попадания внутрь здания максимального количества энергии от низкого зимнего солнца и максимально долгого ее сохранения с помощью качественной теплоизоляции, соответствующего пространственно-планировочного решения, а также почти полного отсутствия теплопотерь через вентиляцию.

Основные принципы проектирования пассивных домов

Суть пассивного дома заключается в экономии уже 80% энергии на эксплуатационных расходах только с помощью соответственного архитектурного проектирования, а также использования системы контролируемой приточно-вытяжной вентиляции с рекуперацией. Основные принципы проектирования пассивного дома можно разбить на следующие подразделы:

Ландшафтно-планировочные принципы

Правильная ориентация здания по сторонам света, основные принципы "правильности" описаны ниже:

Ветрозащита северной глухой стороны здания, закрытость этой стороны: зеленые насаждения, лес, другое здание и т.п.;

Открытость объема здания с юга, отсутствие затенения южного фасада.

Рис 1.Пример применения основных ландшафтно-планировочных и некоторых объемно-планировочных принципов

На рисунке 1 видно, как применены эти принципы, на примере пассивного дома под Черниговом (арх. Т.Эрнст). План дома компактный. С южной стороны выполнено полное остекление Северный фасад глухой, без окон, со стороны северного фасада внутри дома расположены буферные зоны. С севера дом защищен дерерьями, с юга- полностью открыт.

Объемно-планировочные принципы

  • максимальная компактность здания. Компактность — это соотношение площади ограждающих конструкций (оболочки здания ) и всего объема здания (его полезной площади). Чем меньше площадь ограждающих конструкций по отношению к полезной площади здания, тем компактнее оно;
  • по возможности полное отсутствие эркеров, внутренних углов, балконов и т.п. Идеальной считается максимальная приближенность формы здания к самой компактной: полушару, стоящему срезом на земле;
  • зонирование: разделение на буферные и жилые зоны;
  • расположение вспомогательных помещений с севера в качестве буферных зон;
  • расположение жилой зоны на юго-востоке;
  • расположение зимних садов с южной стороны;
  • наличие наружной летней солнцезащиты в виде выступающих архитектурных элементов: эркеров, карнизов, балконов, террас, затеняющих светопрозрачные конструкции и не дающие попадать лучам высокого летнего солнца в здание.

Примечание: этот пункт не должен вступать в противоречие с требованием к компактности плана (то есть, компактности именно "теплого" объема здания). Защита от солнца- это архитектурные элементы, а не "вычурность" плана дома. Солнцезащитные элементы имеют, как правило, свою собственную несущую конструкцию и отдельный фундамент, так как являются "холодными" (не утепленными) и находятся снаружи от утепленной оболочки здания.

На рисунке 2 показано, как применены объемно- планировочные принципы, на примере типового пассивного дома (арх.Т.Эрнст). Видно, как проникают в дом лучи низкого зимнего солнца, при этом выполнена защита от летнего перегрева (с помощью свеса кровли, а также навеса террасы). Также видно, что буферные помещения дома расположены с северной строны.

Фасадные (правильное остекление здания)

  • отсутствие светопрозрачных частей, через которые тепло покидало бы здание, на его северной стороне;
  • расположение с юга максимального количества светопрозрачных конструкций, которые пропускали бы глубоко в здание лучи низкого зимнего солнца;
  • окна и другие светопрозрачные конструкции должны располагаться на фасаде в таком соотношении: 70-80% всех окон с южной стороны, 20-30% с восточной, 0-10% с западной и полное их отсутствие с северной.

Аккумулирующие элементы

  • наличие массивных аккумулирующих элементов внутри помещений для обеспечения приема, сохранения и отдачи ими энергии в местах, куда попадают прямые солнечные лучи от низкого зимнего солнца. Массивными аккумулирующими элементами в этом случае могут служить стены из полнотелого кирпича или бетона, желательно, отделанные изнутри глиняной штукатуркой. Если стены изнутри отделаны гипсокартоном - то массива уже нет. Если стены выполнены из пустотелого кирпича, пено или газоблока, или дерева - то массива тоже нет;
  • использование тромб-стен .

Примечание: тромб стены предназначены для улавливания и аккумулировании солнечного излучения, используемого для нагревания воздуха внутри отапливаемого здания. Циркуляция воздуха в пространстве между остеклением и лучепоглощающей поверхностью — естественная, при этом воздух из каждого помещения выходит через отверстие в нижней части стены, проходит между стеной и остеклением наверх, и уже нагретый воздух возвращается в помещение через отверстия в верхней части теплоаккумулирующей стены.

  • планирование неглубоких помещений, в которых низкое зимнее солнце попадало бы на заднюю массивную (желательно темную) стену, прогревая ее;
  • массивные элементы внутри здания (простенки, внутренние части утепленных наружных стен) также способствуют пассивному накоплению в здании ночного холода в летний зной;
  • улавливание аккумулирующими элементами энергии «внутренних источников тепла» (бытовых приборов, тела человека, лампочек, компьютеров и т.п.).

Инженерные решения

  • система контролируемой приточно-вытяжной вентиляции с рекуперацией ;
  • использование подземных каналов (грунтовых теплообменников ) для пассивного предварительного подогрева (или охлаждения) воздуха или воды.


Рис 9. Пример грунтового теплообменника

Выводы

За счет вышеперечисленных приемов, пассивным способом, экономится огромное количество энергии. В результате — мы получаем пассивный дом, который на эксплуатацию (отопление и охлаждение) требует не более 20% от обычного дома. Причем это не стоит застройщику почти никаких дополнительных инвестиций при строительстве. Все что нужно сделать — это создать правильный архитектурный проект будущего здания и качественно воплотить его в жизнь. Дополнительные расходы на увеличение толщины утеплителя, как правило, нивелируются компактностью здания. А система приточно-вытяжной вентиляции является, по большому счету, обязательной абсолютно для любого типа здания, а не только для энерговыгодных домов. Ведь контролируемая вентиляция — это единственный метод, который обеспечивает 100% качество воздуха постоянно.

Дополнительную же энергию на обслуживание дома можно экономить уже активно: с помощью соответствующего инженерного оборудования (тепловые насосы, солнечные коллекторы, солнечные батареи, ветряки и т.п.), работающего от альтернативных источников энергии (тепла земли и солнца, силы ветров и т.п.). Подобная инженерия в пассивном доме является не обязательной, а только опциональной. Она может значительно (на 10-30%) повысить сметную стоимость здания, но с ее помощью можно свести затраты по эксплуатации дома и его вредное воздействие на окружающую среду практически к нулю, получив, так называемый дом «нулевой энергии», а при желании и наличии средств, даже дом «плюс энергии».

Идея в том, чтобы сделать прототип автономного дома с нулевым энергопотреблением. Достигается это за счет правильно сориентированной, по сторонам света, посадки дома и за счет большой тепло-аккумулирующей массы.

Данную систему еще в 50 х годах придумал учитель физики из Киева, Иванов Александр Васильевич. Назвал он это солнечным вегетарием. С 16,5 квадратных метров такого вегетария удавалось собрать более 200 кг лимонов, а еще там росли ананасы и мандарины.

Этой технологией сейчас активно пользуется Китай. Несколько ее усовершенствовав китайцам удается не только обеспечивать свое огромное население, но и экспортировать сельхозпродукцию в другие страны.

Замысел развил американский архитектор Майкл Рейнольдс, адаптировав систему для комфортного проживания. Он же стал использовать для строительства старые автомобильные покрышки, которые идеально подошли для возведения земляных стен.

Его адаптация выглядит вот так:

В этом проекте внедрены 4 новаторские инженерные системы: солнечное отопление; солнечное кондиционирование; сбор дождевой воды которая используется 4 цикла; выработка электроэнергии при помощи солнечных панелей и ветро- генератора.

Сегодня такие дома есть более чем в 30 странах мира в том числе и в холодном климате Канады и Нидерландов. К сожалению ни в Украине ни в России ни в других постсоветских странах, таких домов еще нет.

Отчёт будет собран на официальном сайте проекта. Так же на сайте будет размещен проект со всей строительной документацией таблицами замеров влажности, температур, освещенности, расхода воды и электроэнергии.

Данные о доме будут регулярно обновляться, и он будет доступен в первую очередь для инвесторов, а также будет продаваться для широкой аудитории.

Чем ещё интересен данный проект? Это экономичность строения, дешевизна самого строительства с использованием бесплатных материалов, полная автономность такого дома от каких либо коммуникаций и экологичность дома.

Этот проект можно назвать самым доступным для постройки, и самым прибыльным видом жилья. Дающим своим владельцам пожизненную экономию не только на коммунальных услугах но и на питании, ведь этот дом круглый год выращивает для вас пищу.

Посмотрите небольшое видео, которое наглядно показывает процесс строительства и эксплуатации такого строения: