Коммерческие потери электроэнергии в электрических сетях. Магнитные способы хищений электроэнергий. Коммерческие потери: основное направление повышения эффективности в электроэнергетике


Потери электроэнергии в электрических сетях
Потери электроэнергии в электрических сетях - важнейший показа-тель экономичности их работы, наглядный индикатор состояния сис-темы учета электроэнергии, эффективности энергосбытовой деятель-ности энергоснабжающих организаций.
Этот индикатор все отчетливей свидетельствует о накапливающих-ся проблемах, которые требуют безотлагательных решений в развитии, реконструкции и техническом перевооружении электрических сетей, совершенствовании методов и средств их эксплуатации и управления, в повышении точности учета электроэнергии, эффективности сбора денежных средств за поставленную потребителям электроэнергию и т.п.
По мнению международных экспертов, относительные потери элек-троэнергии при ее передаче и распределении в электрических сетях большинства стран можно считать удовлетворительными, если они не превышают 4-5 %. Потери электроэнергии на уровне 10 % можно счи-тать максимально допустимыми с точки зрения физики передачи элек-троэнергии по сетям.
Становится все более очевидным, что резкое обострение проблемы снижения потерь электроэнергии в электрических сетях требует актив-ного поиска новых путей ее решения, новых подходов к выбору соот-ветствующих мероприятий, а главное, к организации работы по сни-жению потерь.
В связи с резким сокращением инвестиций в развитие и техниче-ское перевооружение электрических сетей, в совершенствование сис-тем управления их режимами, учета электроэнергии, возник ряд негативных тенденций, отрицательно влияющих на уровень потерь в сетях, таких как: устаревшее оборудование, физический и моральный износ средств учета электроэнергии, несоответствие установленного оборудования передаваемой мощности.
Из вышеотмеченного следует, что на фоне происходящих измене-ний хозяйственного механизма в энергетике, кризиса экономики в стране проблема снижения потерь электроэнергии в электрических сетях не только не утратила свою актуальность, а наоборот выдвину-лась в одну из задач обеспечения финансовой стабильности энерго-снабжающих организаций.
Некоторые определения:
Абсолютные потери электроэнергии --– разность электроэнергии, отпущенной в электрическую сеть и полезно отпущенной потребителям.
Технические потери электроэнергии – потери обусловленные физическими процессами передачи, распределения и трансформации электроэнергии, определяются расчетным путем.
Технические потери делятся на условно-постоянные и переменные (зависящие от нагрузки).
Коммерческие потери электроэнергии – потери, определяемые как разность абсолютных и технических потерь.

СТРУКТУРА КОММЕРЧЕСКИХ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ
В идеальном случае коммерческие потери электроэнергии в элек-трической сети, должны быть равны нулю. Очевидно, однако, что в реальных условиях отпуск в сеть, по-лезный отпуск и технические потери определяются с погрешностями. Разности этих погрешностей фактически и являются структурны-ми составляющими коммерческих потерь. Они должны быть по возможности сведены к минимуму за счет выполнения соответствую-щих мероприятий. Если такая возможность отсутствует, необходимо внести поправки к показаниям электросчетчиков, компенсирующие систематические погрешности измерений электроэнергии.

Погрешности измерений отпущенной в сеть и полезно отпущенной электроэнергии потребителям.
Погрешность измерений электроэнергии в общем случае может быть разбита на
множество составляющих.рассмотрим наиболее значимые составляющие погрешностей изме-рительных комплексов (ИК), в которые могут входить: трансформатор тока (ТТ), трансформатор напряжения (ТН), счетчик электроэнергии (СЭ), линия присоединения СЭ к ТН.
К основным составляющим погрешностей измерений отпущенной в сеть и полезно отпущенной электроэнергии относятся:

погрешности измерений электроэнергии в нормальных условиях
работы ИК, определяемые классами точности ТТ, ТН и СЭ;
дополнительные погрешности измерений электроэнергии в реаль-ных условиях эксплуатации ИК, обусловленные:
заниженным против нормативного коэффициентом мощности
нагрузки (дополнительной угловой погрешностью); .
влиянием на СЭ магнитных и электромагнитных полей различной частоты;
недогрузкой и перегрузкой ТТ, ТН и СЭ;
несимметрией и уровнем подведенного к ИК напряжения;
работой СЭ в неотапливаемых помещениях с недопустимо низ-
кой температурой и т.п.;
недостаточной чувствительностью СЭ при их малых нагрузках,
особенно в ночные часы;
систематические погрешности, обусловленные сверхнормативны-ми сроками службы ИК.
погрешности, связанные с неправильными схемами подключения электросчетчиков, ТТ и ТН, в частности, нарушениями фазировки подключения счетчиков;
погрешности, обусловленные неисправными приборами учета электроэнергии;
погрешности снятия показаний электросчетчиков из-за:
ошибок или умышленных искажений записей показаний;
неодновременности или невыполнения установленных сроков
снятия показаний счетчиков, нарушения графиков обхода счет-
чиков;
ошибок в определении коэффициентов пересчета показаний
счетчиков в электроэнергию.
Следует заметить, что при одинаковых зна-ках составляющих погрешностей измерений отпуска в сеть и полезного отпуска коммерческие потери будут уменьшаться, а при разных - уве-личиваться. Это означает, что с точки зрения снижения коммерческих потерь электроэнергии необходимо проводить согласованную техниче-скую политику повышения точности измерений отпуска в сеть и полезного отпуска. В частности, если мы, например, будем односторонне уменьшать систематическую отрицательную погрешность измерений (модернизировать систему учета), не меняя погрешность измере-ний, коммерческие потери при этом возрастут, что, кстати, имеет место на практике.

Методика расчёта технологических потерь электроэнергии
в линии электропередач ВЛ-04кВ садоводческого товарищества

До какого-то определённого времени необходимость расчёта технологических потерь в линии электропередач , принадлежащей СНТ, как юридическому лицу, или садоводам, имеющим садовые участки в границах какого-либо СНТ , была не нужна. Правление даже не задумывалось об этом. Однако дотошные садоводы или, скорее, сомневающиеся, заставили ещё раз бросить все силы на способы вычисления потерь электроэнергии вЛЭП . Самый простой путь, безусловно - это тупое обращение в компетентную компанию, то бишь, электроснабжающую или мелкую фирмочку, которые и смогут рассчитать для садоводов технологические потери в их сети. Сканирование Интернета позволило разыскать несколько методик расчёта энергопотерь во внутренней линии электропередач применительно к любому СНТ. Их анализ и разбор необходимых значений для вычисления конечного результата позволил отбросить те из них, которые предполагали замер специальных параметров в сети с помощью специального оборудования.

Предлагаемая Вам для использования в садоводческом товариществе методика основана на знании основ передачи электроэнергии по проводам базового школьного курса физики. При её создании были использованы нормы приказа Минпромэнерго РФ № 21 от 03.02.2005 г. "Методика расчёта нормативных потерь электроэнергии в электрических сетях", а также книга Ю.С Железко, А.В Артемьева, О.В. Савченко "Расчёт, анализ и нормирование потерь элекроэнергии в электрических сетях", Москва, ЗАО "Издательство НЦЭНАС", 2008.

Основа для рассматриваемого ниже расчёта технологических потерь в сети взята вот отсюда Методика расчёта потерь Ратуша А. Вы можете воспользоваться ею, изложенной далее. Разница у них в том, что здесь на сайте мы вместе разберём упрощенную методику, которая на простом, вполне реально существующем ТСН «Простор», поможет понять сам принцип применения формул и порядок подстановки в них значений. Далее Вы сможете самостоятельно рассчитать потери для своей существующей в ТСН электросети с любой конфигурацией и сложностью. Т.е. страница адаптирована к ТСН.

Исходные условия для расчётов.

В линии электропередач используется провод СИП-50, СИП-25, СИП-16 и немного А-35 (алюминиевый, сечением 35мм², открытый без изоляции);

Для простоты расчёта возьмём усреднённое значение, провод А-35.

У нас в садоводческом товариществе провода разного сечения, что чаще всего и бывает. Кто хочет, разобравшись с принципами расчётов, сможет посчитать потери для всех линий с разным сечением, т.к. сама методика предполагает производство расчёта потерь электроэнергии для одного провода, не 3 фаз сразу, а именно одного (одной фазы).

Потери в трансформаторе (трансформаторах) не учитываются, т.к. общий счётчик потребляемой электроэнергии установлен после трансформатора;

= Потери трансформатора и подключения к высоковольтной линии нам рассчитала энергоснабжающая организация «Саратовэнерго» а именно РЭС Саратовского района, в поселке «Тепличный». Они составили в среднем (4,97%) 203 кВт.ч в месяц.

Расчёт производится для выведения максимальной величины потерь электроэнергии;

Произведённые расчёты для максимального потребления помогут перекрыть те технологические потери , к-е не учтены в методике, но, тем не менее, всегда присутствуют. Эти потери достаточно сложно вычислить. Но, так как, они, всё-таки, не так значительны, то ими можно пренебречь.

Суммарная присоединённая мощность в СНТ достаточна для обеспечения максимальной мощности потребления;

Исходим из того, что при условии включения всеми садоводами своих выделенных каждому мощностей, в сети не происходит снижения напряжения и выделенной электро снабжающей организацией электрической мощности достаточно, чтобы не сгорели предохранители или не выбило автоматы защитного отключения. Выделенная электрическая мощность обязательно прописана вДоговоре электроснабжения .

Величина годового потребления соответствует фактическому годовому потреблению электроэнергии в СНТ - 49000 кВт/ч;

Дело в том, что, если суммарно садоводы и электроустановки СНТ превышают выделяемое на всех количество электроэнергии, то соответственно расчёт технологических потерь должен уточняться для другого количества потребленных кВт/ч. Чем больше СНТ съест электроэнергии, тем больше будут и потери. Корректировка расчётов в этом случае необходима для уточнения величины платежа за технологические потери во внутренней сети , и последующего утверждения её на общем собрании.

К электрической сети, через 3 одинаковых по параметрам фидера (длина, марка провода (А-35), электрическая нагрузка), подключено 33 участка (домов).

Т.е. к распределительному щиту СНТ, где расположен общий трёхфазный счётчик, подключены 3 провода (3 фазы) и один нулевой провод. Соответственно к каждой фазе подключены равномерно по 11 домов садоводов, всего 33 домов.

Длина линии электропередач в СНТ составляет 800 м..

  1. Расчёт потерь электроэнергии по суммарной длине линии.

Для расчёта потерь используется следующая формула:

ΔW = 9,3 . W² . (1 + tg²φ)·K ф ²·K L .L

ΔW - потери электроэнергии в кВт/ч;

W - электроэнергия, отпущенная в линию электропередач за Д (дней), кВт/ч (в нашем примере 49000 кВт/ч или 49х10 6 Вт/ч );

К ф - коэффициент формы графика нагрузки;

К L - коэффициент, учитывающий распределённость нагрузки по линии (0,37 - для линии с рапределённой нагрузкой, т.е. на каждую фазу из трёх подключены по 11 домов садоводов);

L - длина линии в километрах (в нашем примере 0,8 км);

tgφ - коэффициент реактивной мощности (0,6 );

F - сечение провода в мм²;

Д - период в днях (в формуле используем период 365 дней);

К ф ² - коэффициент заполнения графика, рассчитывается по формуле:

K ф ² = (1 + 2К з)
3K з

гдеК з - коэффициент заполнения графика. При отсутствии данных о форме графика нагрузки обычно принимается значение - 0,3 ; тогда: K ф ² = 1,78 .

Расчёт потерь по формуле выполняется для одной линии фидера. Их 3 по 0,8 километра.

Считаем, что общая нагрузка равномерно распределена по линиям внутри фидера. Т.е. годовое потребление по одной линии фидера равно 1/3 от общего потребления.

Тогда: W сум. = 3 * ΔW в линии .

Отпущенная садоводам электроэнергия за год составляет 49000 кВт/ч, тогда по каждой линии фидера: 49000 / 3 = 16300 кВт/ч или16,3·10 6 Вт/ч - именно в таком виде значение присутствует в формуле.

ΔW линии =9,3 . 16,3²·10 6 . (1+0,6²)·1,78·0,37 . 0,8 =
365 35

ΔW линии = 140,8 кВт/ч

Тогда за год по трём линиям фидера: ΔW сум. = 3 х 140,8 = 422,4 кВт/ч .

  1. Учёт потерь на вводе в дома.

При условии, что все приборы учета потребляемой энергии размещены на опорах ЛЭП, то длина провода от точки присоединения линии, принадлежащей садоводу до его индивидуального прибора учёта составит всего 6 метров (общая длина опоры 9 метров).

Сопротивление провода СИП-16 (самонесущий изолированный провод, сечением 16 мм²) на 6 метров длины составляет всего R = 0,02ом .

P ввода = 4 кВт (примем за расчётную разрешённую электрическую мощность для одного дома).

Рассчитываем силу тока для мощности 4 кВт:I ввода = P ввода /220 = 4000Вт / 220в = 18 (А) .

Тогда: dP ввода = I² x R ввода = 18² х 0,02 = 6,48Вт - потери за 1 час при нагрузке.

Тогда суммарные потери за год в линии одного подключённого садовода: dW ввода = dP ввода x Д (часов в год) х К исп.макс. нагрузки = 6,48 x 8760 x 0,3 = 17029 Вт/ч (17,029 кВт/ч) .

Тогда суммарные потери в линиях 33 подключённых садоводов за год составят:
dW ввода = 33 х 17,029 кВт/ч = 561,96 кВт/ч

  1. Учёт суммарных потерь в ЛЭП за год:

ΔW сум. итог = 561,96 + 422,4 = 984,36 кВт/ч

ΔW сум. %= ΔW сум / W сум x 100%= 984,36/49000 х 100%= 2%

Итого: Во внутренней воздушной ЛЭП СНТ протяжённостью 0,8 километра (3 фазы и ноль), проводе сечением 35мм², подключёнными 33 домами, при общем потреблении 49000 кВт/ч электроэнергии в год потери составят 2%

В электрических сетях имеют место быть большие фактические потери электроэнергии.

Из общего количества потерь, потери в силовых трансформаторах МУП «ПЭС» составляют примерно 1,7%. Потери электроэнергии в линиях электропередачи напряжением 6-10 кВ составляют около 4,0 %. Потери электроэнергии в сетях 0,4 кВ составляют 9-10%.

Анализ динамики абсолютных и относительных потерь электроэнергии в сетях России, режимов их работы и загрузки показывает, что практически отсутствуют весомые причины роста технических потерь, обусловленных физическими процессами передачи и распределения электроэнергии. Основная причина потерь - увеличение коммерческой составляющей.

Основными причинами технических потерь являются:

Изношенность электрооборудования;

Использование устаревших видов электрооборудования;

Несоответствие используемого электрооборудования существующим нагрузкам;

Неоптимальные установившиеся режимы в распределительных сетях по уровням
напряжения и реактивной мощности.

Основными причинами коммерческих потерь являются:

Недопустимые погрешности измерений электроэнергии (несоответствие приборов учета классам точности, несоответствие трансформаторов тока существующим нагрузкам, нарушение сроков поверки и неисправности приборов учета электроэнергии);

Использование несовершенных методов расчета количества отпущенной электроэнергии при отсутствии приборов учета;

Несовершенство методов снятия показаний с приборов учета и выписки квитанций непосредственно абонентами бытового сектора;

Бездоговорное и неучтенное потребление электроэнергии (хищения);

Искажение объемов отпуска электроэнергии потребителям.

ФАКТИЧЕСКИЕ ПОТЕРИ ЭЛЕКТРОЭНЕРГИИ

В МУП «ПОДОЛЬСКАЯ ЭЛЕКТРОСЕТЬ»

СТРУКТУРА ФАКТИЧЕСКИХ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ



Технологические потери электроэнергии (далее – ТПЭ) при ее передаче по электрическим сетям ТСО включают в себя технические потери в линиях и оборудовании электрических сетей, обусловленных физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования, с учетом расхода электроэнергии на собственные нужды подстанций и потери, обусловленные допустимыми погрешностями системы учета электроэнергии. Объем (количество) технологических потерь электроэнергии в целях определения норматива технологических потерь электроэнергии при ее передаче по электрическим сетям рассчитывается в соответствии инструкцией по организации в Министерстве энергетики Российской Федерации работы по расчету и обоснованию нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям, утвержденной приказом № 000 от 01.01.2001 года.

Методы расчета нормативных потерь электрической энергии

Основные понятия

1. Прием электрической энергии в сеть

2. Отдача электрической энергии из сети

4. Фактические (отчетные) потери электроэнергии в абсолютных единицах

6. Технические потери электроэнергии

9. Норматив технологических потерь электроэнергии в абсолютных единицах

11. Нормативные потери электроэнергии абсолютные

Расчет потерь в оборудовании электрической сети

ü Потери электроэнергии в воздушной линии

ü Потери электроэнергии в кабельной линии

ü Потери электроэнергии в трансформаторах (автотрансформаторах)

ü Потери электроэнергии в токоограничивающих реакторах

Условно-постоянные потери электроэнергии

Ü потери в стали силовых трансформаторов и автотрансформаторов;

Ü потери в стали шунтирующих реакторов;

Ü потери на корону в воздушных линиях 110 кВ и выше;

Ü потери в батареях конденсаторов (БСК) и статических тиристорных компенсаторах;

Ü потери в синхронных компенсаторах (СК);

Ü потери в ограничителях перенапряжения;

Ü потери электроэнергии в счетчиках непосредственного включения;

Ü потери в измерительных трансформаторах тока и напряжения;

Ü потери в изоляции кабельных линий;

Ü потери от токов утечки по изоляторам воздушных линий;

Ü потери в соединительных проводах и сборных шинах подстанций;

Ü расход электроэнергии на плавку гололеда;

Ü расход электроэнергии на собственные нужды подстанций с учетом потерь в стали и меди трансформаторов собственных нужд при несовпадении учета с границей балансовой принадлежности.

Переменные потери электроэнергии

Ü нагрузочные потери электроэнергии в трансформаторах и автотрансформаторах

Ü нагрузочные потери электроэнергии в воздушных и кабельных линиях

Ü потери электроэнергии в токограничивающих реакторах

Методы расчета переменных потерь

Метод оперативных расчетов установившихся режимов с использованием данных оперативно-диспетчерских комплексов (ОИК)

Метод расчета потерь по данным расчетных суток (использование режимных данных за характерные сутки)

Метод расчета потерь по средним нагрузкам

Метод расчета потерь в режиме максимальных нагрузок сети с использованием числа часов наибольших потерь мощности

Оценочные методы расчета

Метод оперативных расчетов

Потери электроэнергии на интервале времени в трехобмоточном трансформаторе

Метод расчетных суток

Потери электроэнергии за расчетный период

Коэффициент формы графика

Метод средних нагрузок

Разделение потерь на составляющие может проводиться по разным критериям: характеру потерь (постоянные, переменные), классам напряжения, группам элементов, производственным подразделениям и т. п. Для целей анализа и нормирования потерь целесообразно использовать укрупненную структуру потерь электроэнергии, в которой потери разделены на составляющие исходя из их физической природы и специфики методов определения их количественных значений.

На основе такого подхода фактические потери могут быть разделены на четыре составляющие:

1) технические потери электроэнергии, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей. Теоретически технические потери могут быть измерены при установке соответствующих приборов, фиксирующих поступление и отпуск электроэнергии на рассматриваемом объекте. Практически же оценить действительное их значение с приемлемой точностью с помощью средств измерения нельзя. Для отдельного элемента это объясняется сравнительно малым значением потерь, сопоставимым с погрешностью приборов учета. Например, измерение потерь в линии, фактические потери энергии в которой составляют 2 %, с помощью приборов, имеющих погрешность ±0,5 %, может привести к результату от 1,5 до 2,5 %. Для объектов, имеющих большое количество точек поступления и отпуска электроэнергии (электрическая сеть), установка специальных приборов во всех точках и обеспечение синхронного снятия их показаний практически нереальна (особенно для определения потерь мощности). Во всех этих точках счетчики электроэнергии и так установлены, однако мы не можем сказать, что разность их показаний и есть действительное значение технических потерь. Это связано с территориальной разбросанностью многочисленных приборов и невозможностью обеспечения полного контроля правильности их показаний и отсутствия случаев воздействия на них других лиц. Разность показаний этих приборов представляет собой фактические потери, из которых следует выделить искомую составляющую. Поэтому можно утверждать, что измерить технические потери на реальном сетевом объекте нельзя. Их значение можно получить только расчетным путем на основе известных законов электротехники;

2) расход электроэнергии на СН подстанций, необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала. Этот расход регистрируется счетчиками, установленными на трансформаторах СН подстанций;

3) потери электроэнергии, обусловленные погрешностями ее измерения (недоучет электроэнергии, метрологические потери). Эти потери получают расчетным путем на основе данных о метрологических характеристиках и режимах работы приборов, используемых для измерения энергии (ТТ, ТН и самих электросчетчиков). В расчет метрологических потерь включают все приборы учета отпуска электроэнергии из сети, в том числе и приборы учета расхода электроэнергии на СН подстанций;

4) коммерческие потери, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате электроэнергии бытовыми потребителями и другими причинами в сфере организации контроля за потреблением энергии. Коммерческие потери не имеют самостоятельного математического описания и, как следствие, не могут быть рассчитаны автономно. Их значение определяют как разницу между фактическими потерями и суммой первых трех составляющих.

Три первые составляющие укрупненной структуры потерь обусловлены технологическими потребностями процесса передачи электроэнергии по сетям и инструментального учета ее поступления и отпуска. Сумма этих составляющих хорошо описывается термином -технологические потери. Четвертая составляющая — коммерческие потери - представляет собой воздействие «человеческого фактора» и включает в себя все проявления такого воздействия: сознательные хищения электроэнергии некоторыми абонентами с помощью изменения показаний счетчиков, потребление энергии помимо счетчиков, неуплату или неполную оплату показаний счетчиков, определение поступления и отпуска электроэнергии по некоторым точкам учета расчетным путем (при несовпадении границ балансовой принадлежности сетей и мест установки приборов учета) и т. п.

Структура потерь, в которой укрупненные составляющие потерь сгруппированы по различным критериям, приведена на рис. 1.1.

Каждая составляющая потерь имеет свою более детальную структуру.

Нагрузочные потери включают в себя потери:

  • в проводах линий передачи;
  • силовых трансформаторах и автотрансформаторах;
  • токоограничивающих реакторах;
  • заградителях высокочастотной связи;
  • трансформаторах тока;
  • соединительных проводах и шинах распределительных устройств (РУ) подстанций.

Последние две составляющие в силу отсутствия практики их поэлементных расчетов и незначительной величины обычно определяют на основе удельных потерь, рассчитанных для средних условий, и включают в состав условно-постоянных потерь.

Потери холостого хода включают в себя постоянные (не зависящие от нагрузки) потери:

  • в силовых трансформаторах (автотрансформаторах); компенсирующих устройствах (синхронных и тиристорных компенсаторах, батареях конденсаторов и шунтирующих реакторах);
  • оборудовании системы учета электроэнергии (ТТ, ТН, счетчиках и соединительных проводах);
  • вентильных разрядниках и ограничителях перенапряжения;
  • устройствах присоединения высокочастотной связи (ВЧ-связи); изоляции кабелей.

Потери, обусловленные погодными условиями (климатические потери) включают в себя три составляющие:

  • потери на корону в воздушных линиях электропередачи (BЛ) 110 кВ и выше;
  • потери от токов утечки по изоляторам BЛ;
  • расход электроэнергии на плавку гололеда.

Расход электроэнергии на СН подстанций обусловлен режимами работы различных (до 23) типов ЭП. Этот расход можно разбить на шесть составляющих:

  • на обогрев помещений;
  • вентиляцию и освещение помещений;
  • системы управления подстанцией и вспомогательные устройства синхронных компенсаторов;
  • охлаждение и обогрев оборудования;
  • работу компрессоров воздушных выключателей и пневматических приводов масляных выключателей;
  • текущий ремонт оборудования, устройства регулирования напряжения под нагрузкой (РПН), дистилляторы, вентиляцию закрытого распределительного устройства (ЗРУ), обогрев и освещение проходной (прочий расход).

Погрешности учета электроэнергии включают составляющие, обусловленные погрешностями измерительных ТТ, ТН и электрических счетчиков. Коммерческие потери также могут быть разделены на многочисленные составляющие, отличающиеся причинами их возникновения.

Все перечисленные составляющие подробно рассмотрены в последующих главах.

Критерии отнесения части электроэнергии к потерям могут быть физического и экономического характера. Некоторые специалисты считают, что расход электроэнергии на СН подстанций надо относить к отпуску электроэнергии, а остальные составляющие - к потерям. Расход на СН подстанций по характеру использования электроэнергии действительно ничем не отличается от ее использования потребителями. Однако это не является основанием считать его полезным отпуском, под которым понимают электроэнергию, отпущенную потребителям. Расход же электроэнергии на СН подстанций является внутренним потреблением сетевого объекта. Кроме того, при таком подходе необоснованно предполагается, что расход части энергии в элементах сетей на доставку другой ее части потребителям (технические потери), в отличие от расхода на СН подстанций, не является полезным.

Приборы учета не изменяют потоков мощности по сети, они лишь не совсем точно их регистрируют. Поэтому некоторые специалисты считают теоретически неверным относить недоучет электроэнергии, обусловленный погрешностями приборов, к потерям (ведь объем электроэнергии не изменяется от того, каким образом приборы ее регистрируют!).

Можно согласиться с теоретической правильностью таких рассуждений, как и — одновременно — с их практической бесполезностью. Определять структуру потерь нас заставляет не наука (для научных исследований все подходы имеют смысл), а экономика. Поэтому для анализа отчетных потерь следует применять экономические критерии. С экономических позиций потери - это та часть электроэнергии, на которую ее зарегистрированный полезный отпуск потребителям оказался меньше электроэнергии, полученной сетью от производителей электроэнергии. Под полезным отпуском электроэнергии понимается не только та электроэнергия, денежные средства за которую действительно поступили на расчетный счет энерго-снабжающей организации, но и та, на которую выставлены счета, то есть потребление энергии зафиксировано. Выставление счетов является практикой, применяемой к юридическим лицам, потребление энергии которыми фиксируется ежемесячно. В отличие от этого ежемесячные показания счетчиков, фиксирующих потребление энергии бытовыми абонентами, обычно неизвестны. Полезный отпуск электроэнергии бытовым абонентам определяют по поступившей за месяц оплате, поэтому вся неоплаченная энергия автоматически попадает в потери.

Расход электроэнергии на СН подстанций не является продукцией, оплачиваемой конечным потребителем, и с экономической точки зрения ничем не отличается от расхода электроэнергии в элементах сетей на передачу остальной ее части потребителям.

Занижение объемов полезно отпущенной электроэнергии приборами учета (недоучет) имеет такой же экономический характер, как и две описанные выше составляющие. То же самое можно сказать и о хищениях электроэнергии. Поэтому все четыре описанные выше составляющие потерь с экономической точки зрения одинаковы.

Фактические потери являются строго детерминированной величиной, жестко связанной с денежными средствами, полученными за проданную энергию. Задача «исправления» отчетных потерь на основе учета погрешностей счетчиков бессмысленна, так как не может привести к изменению объема полученных (и недополученных) денежных средств.

Потерянный рубль остается потерянным независимо от того, по какой причине и где он потерян. Но для того, чтобы принять наиболее эффективные меры по снижению потерь, необходимо знать, где и по каким причинам они происходят. В связи с этим основной задачей расчета и анализа потерь является определение их детальной структуры, выявление конкретных очагов потерь и оценка возможностей их снижения до экономически оправданных значений. Одним из методов такой диагностики потерь является анализ небалансов электроэнергии на объектах (подстанциях, предприятиях сетей) и в сетевых организациях.

Решение проблемы потерь электроэнергии, возникающих на ЛЭП, силовых трансформаторах в результате некачественной изоляции проводящих частей, использования оборудования с реактивной нагрузкой, хищения энергоносителя, является актуальной во всем мире.

Специалисты в области энергетики постоянно стремятся исправить ситуацию и разрабатывают мероприятия по сведению к минимуму разности между показателями произведенной электроэнергией и учтенной потребителями.

Причины потерь электрической энергии при ее транспортировке

Регулирование и учет всех видов потерь электроэнергии осуществляется на государственном уровне при помощи принятых законодательных актов. Разница в напряжении, варьирующегося в пределах 220 В- 380 В относится к одной из причин создавшейся ситуации. Для обеспечения таких показателей при транспортировке напрямую от генераторов электростанций до конечного потребителя сотрудникам энергетических служб необходимо прокладывать сети с проводами большого диаметра.

Такая задача является невыполнимой. Толстые провода, сечение которых будет соответствовать параметрам напряжения электрической энергии, соответствующей пожеланиям потребителей, невозможно монтировать на ЛЭП.

Укладка магистралей под землей относится к экономически не выгодным и не рациональным мероприятиям. Большой вес проводов не позволяет проводить электромонтажные работы без риска возникновения аварийных ситуаций и угрозы жизни работников.

Для предотвращения потерь электроэнергии по этой причине было принято решение об использовании высоковольтных линий электропередач, способных транспортировать электрический ток небольшой величины на фоне повышенного напряжения, достигающего значений до 10000 Вольт. В такой ситуации отпадает необходимость монтажа проводов с большим сечением.

Подробную информацию по законодательным актам вы сможете без труда найти в интернете.

Следующей причиной, обуславливающей потери энергетических ресурсов во время их транспортировки к потребителю, является недостаточно эффективная работа трансформаторов. Их установка вызвана необходимостью преобразования высокого напряжения и приведения его к значениям, используемых в распределительных сетях.

Плохой контакт проводников, увеличение их сопротивления со временем усугубляют ситуацию и также становятся факторами, которые обуславливают потери электрической энергии. В их список также необходимо внести повышенную влажность воздуха, вызывающей утечку тока на корону, а также изоляцию проводов, несоответствующую требованиям нормативной документации.

После доставки производителем энергии в организацию, занимающейся ее распределением между потребителями, происходит преобразование полученного высокого напряжения до значений 6-10 кВ. Но это еще не конечный результат.

Снова необходима ступенчатая трансформация напряжения до цифры 0,4 кВ, а затем до значений, нужных обычным потребителям. Они варьируются в пределах 220 В -380 В. На этом этапе функционирования трансформаторов снова происходит утечка энергии. Каждая модель агрегатов отличается КПД и допустимой на него нагрузкой.

При мощности потребления, которая будет больше или меньше расчетных ее значений, поставщикам снова не удастся избежать энергетических потерь.

К еще одному негативному моменту при транспортировке энергии относится несоответствие эксплуатационных характеристик используемой модели трансформатора, предназначенного для снижения напряжения в сети, величиной 6-10 кВ до 220 В и потребляемой потребителями мощности.

Такая ситуация приводит к выходу со строя преобразующего устройства и отсутствию возможности получить необходимые параметры электрического тока на выходе. Снижение напряжения приводит к сбою в работе бытовых приборов и увеличенному расходу энергии. И тогда снова фиксируются ее потери.

Разработка мероприятий по устранению таких причин поможет исправить такую ситуацию. Появится возможность свести потери во время ее транспортировки к конечному потребителю к минимуму.

Утечка электрической энергии в домашних условиях

К причинам потерь энергии после прохождения прибора учета конечного потребителя относятся:

  • излишний расход тока при нагреве проводников, возникающего в случае превышения расчетных параметров потребления электроэнергии;
  • отсутствие качественных контактов в розетках, рубильниках, выключателях, патронах для установки ламп, обеспечивающих искусственную освещенность помещений и других приборах коммутации;
  • емкостной и индуктивный характер нагрузки на распределительную сеть конечного потребителя;
  • использование устаревших моделей бытовой техники, потребляющих большое количество электроэнергии.

Мероприятия по снижению энергопотерь в домашних условиях

В перечень мероприятий по устранению потерь энергии в домах, квартирах внесены:


Полезное видео

Подробную информацию о методах снижения энергопотерь вы можете почерпнуть из видео ниже.